
ChaosPro

Martin Pfingstl

ChaosPro ii

COLLABORATORS

TITLE :

ChaosPro

ACTION NAME DATE SIGNATURE

WRITTEN BY Martin Pfingstl February 11, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ChaosPro iii

Contents

1 ChaosPro 1

1.1 Contents . 1

1.2 Preface . 3

1.3 Why should I use this program? . 4

1.4 Requirements . 6

1.5 Installation . 7

1.6 Author . 7

1.7 Concept . 8

1.8 PicTask . 8

1.9 Palettes . 11

1.10 Editing a Palette . 12

1.11 Animationwindows . 13

1.12 CycleControl-Window . 17

1.13 User Defined Windows . 17

1.14 Dockwindows . 18

1.15 Formeleditor für Julia/Mandel . 19

1.16 Formula editor for IFS . 27

1.17 Formula editor for L-Systems . 28

1.18 Outputwindow . 30

1.19 Network window . 30

1.20 2D/3D-Fractalwindows . 31

1.21 Juliasets: Theory . 32

1.22 Mandelbrotsets: Theory . 35

1.23 2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets . 36

1.24 2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets . 40

1.25 2.3 Fraktale --- 2.3.2 Julia- und Mandelbrotmengen . 43

1.26 2.3 Fraktale --- 2.3.2 Julia- und Mandelbrotmengen . 45

1.27 2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets . 45

1.28 2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets . 45

1.29 2.3 Fractals --- 2.3.3 Bifurcationdiagrams . 47

ChaosPro iv

1.30 2.3 Fraktale --- 2.3.3 Bifurkationsdiagramme . 49

1.31 2.3 Fractals --- 2.3.3 Bifurcationdiagrams . 49

1.32 2.3 Fractals --- 2.3.4 Dynamic Systems . 50

1.33 2.3 Fractals --- 2.3.4 Dynamic Systems . 51

1.34 2.3 Fractals --- 2.3.4 Dynamic Systems . 52

1.35 2.3 Fractals --- 2.3.5 Plasma . 54

1.36 2.3 Fractals --- 2.3.5 Plasma . 54

1.37 2.3 Fractals --- 2.3.6 Lyapunov-Space . 55

1.38 2.3 Fractals --- 2.3.6 Lyapunov-Space . 57

1.39 2.3 Fractals --- 2.3.6 Lyapunov-Space . 58

1.40 2.3 Fractals --- 2.3.7 IFS . 58

1.41 2.3 Fractals --- 2.3.7 IFS . 61

1.42 2.3 Fraktale --- 2.3.8 L-System . 62

1.43 2.3 Fractals --- 2.3.8 L-System . 63

1.44 2.3 Fractals --- 2.3.9 Diffusion . 64

1.45 2.3 Fractals --- 2.3.9 Diffusion . 64

1.46 2.3 Fractals --- 2.3.10 Brown . 65

1.47 2.3 Fractals --- 2.3.10 Brown . 66

1.48 2.3 Fractals --- 2.3.11 3D-Ansichten . 67

1.49 2.3 Fractals --- 2.3.11 3D-Views . 67

1.50 2.3 Fractals --- 2.3.11 3D-Views . 69

1.51 2.3 Fractals --- 2.3.11 3D-Views . 70

1.52 2.3 Fractals --- 2.3.12 Wizardwindow . 72

1.53 2.3 Fractals --- 2.3.13 Commentwindow . 73

1.54 2.4 Menus . 73

1.55 2.4 Menus . 75

1.56 2.4 Menus . 77

1.57 2.4 Menus . 79

1.58 2.4 Menus . 80

1.59 2.4 Menus . 83

1.60 2.5 Programdirectories . 84

1.61 2.6 Preferencesprogram . 85

1.62 2.7 Troubleshooting . 87

1.63 2.8 Others worth mentioning . 88

1.64 2.9 Tooltypes . 89

1.65 2.10 Legal Stuff . 92

1.66 2.11 Searching for... 93

1.67 2.12 About the Speed... 94

1.68 2.13 Changes since V1.0 . 94

1.69 Some Cookies (sorry, couldn’t resist) . 101

1.70 2.14 Many Thanks and Greetings to... 102

1.71 2.15 Features of ChaosPro . 103

1.72 Index . 112

ChaosPro 1 / 115

Chapter 1

ChaosPro

1.1 Contents

I please you to read chapter 2.15. This chapter describes some of the most ←↩
impressive features of ChaosPro.

It happened several times in the past, that people complained for example about ←↩
not being able to

save real 24 bit images or that they weren’t able to get nice 3D transformations ←↩
of fractals. These

people simply didn’t find the correct paragraphs in the guide file, which ←↩
exaplains, what one has to do to get the expected result. So chapter 2.15 ←↩
explains the

necessary stuff for some features.

Contents

I. Introduction

...... 1.1 Preface

...... 1.2 Why should I use this program?

...... 1.3 Requirements

...... 1.4 Installation and Deinstallation

...... 1.5 Author

II. Description

...... 2.1 Concept

...... 2.2 The Various Windows

............ 2.2.1 PicTask-Window

............ 2.2.2 Palettewindow

............ 2.2.3 EditPalettewindow

............ 2.2.4 Animationwindow

............ 2.2.5 CycleControl-Window

............ 2.2.6 User defined Windows

............ 2.2.7 Dockwindows

............ 2.2.8 Formula Editor for Julia/Mandel

............ 2.2.9 Formula Editor for IFS

............ 2.2.10 Formula Editor for L-Systems

............ 2.2.11 Outputwindow

ChaosPro 2 / 115

............ 2.2.12 Network window

...... 2.3 Fractals

............ 2.3.1 2D/3D-Fractalwindows

............ 2.3.2 Julia- and Mandelbrotsets

.................. 2.3.2.1 Theory: Juliasets

.................. 2.3.2.2 Theory: Mandelbrotsets

.................. 2.3.2.3 Parameterwindow 1

.................. 2.3.2.4 Parameterwindow 2

.................. 2.3.2.5 Parameterwindow 3

.................. 2.3.2.6 Datawindow

.................. 2.3.2.7 The Formula Window

.................. 2.3.2.8 The Colormapping Window

............ 2.3.3 Bifurcationdiagrams

.................. 2.3.3.1 Theory

.................. 2.3.3.2 Parameterwindow 1

.................. 2.3.3.3 Datawindow

............ 2.3.4 Dynamic Systems

.................. 2.3.4.1 Theory

.................. 2.3.4.2 Parameterwindow 1

.................. 2.3.4.3 Parameterwindow 2

............ 2.3.5 Plasma

.................. 2.3.5.1 Theory

.................. 2.3.5.2 Parameterwindow 1

............ 2.3.6 Lyapunov-Space

.................. 2.3.6.1 Theory

.................. 2.3.6.2 Parameterwindow 1

.................. 2.6.6.3 Datawindow

............ 2.3.7 IFS

.................. 2.3.7.1 Theory

.................. 2.3.7.2 Parameterwindow 1

............ 2.3.8 L-System

.................. 2.3.8.1 Theory

.................. 2.3.8.2 Parameterwindow 1

............ 2.3.9 Diffusion

.................. 2.3.9.1 Theory

.................. 2.3.9.2 Parameterwindow 1

............ 2.3.10 Brownian Motion

.................. 2.3.10.1 Theory

.................. 2.3.10.2 Parameterwindow 1

............ 2.3.11 3D-Views

.................. 2.3.11.1 3D-Introduction

.................. 2.3.11.2 3D-Parameterwindow 1

.................. 2.3.11.3 3D-Parameterwindow 2

.................. 2.3.11.4 3D-Parameterwindow 3

............ 2.3.12 Wizardwindow

ChaosPro 3 / 115

............ 2.3.13 Commentwindow

...... 2.4 The Menusystem

............ 2.4.1 Systemmenu

............ 2.4.2 Fractalmenu

............ 2.4.3 Fractalwindows

............ 2.4.4 Windows

............ 2.4.5 Extras

............ 2.4.6 User defined Menus

...... 2.5 Programdirectories

...... 2.6 Preferencesprogram

...... 2.7 Troubleshooting

...... 2.8 Others worth mentioning

...... 2.9 Tooltypes, startup parameters, start from CLI

...... 2.10 Legal stuff

...... 2.11 Searching for...

...... 2.12 About the speed...

...... 2.13 History & Changes since V1.0

...... 2.14 Many Thanks and Greetings to...

...... 2.15 Features of ChaosPro

III. Index

1.2 Preface

I. Introduction

1.1 Preface

What? Yet another fractal-creating program ??

On the one side one could think that there are enough programs for creating ←↩
fractals

on the Amiga. But if you are looking at other platforms e.g. IBM PC with FractInt
from the Stone Soap Group, then everybody is realizing quickly that the programs ←↩

on
the Amiga aren’t as powerful as they seem in the first way: None of them is able ←↩

to
create as many different fractal types as FractInt and none of them allows ←↩

changing
as many parameters as FractInt. Well, FractInt surely isn’t perfect, but it’s good
enough for a few ideas...

If you have a look at this program, then you will notice, that ChaosPro is quite ←↩
powerful and huge.

Constantly the users of ChaosPro have wondered themselves, why ChaosPro is Public ←↩
Domain. Many other,

much smaller, much buggier, less powerful programs are Shareware. I thought about ←↩
all this for some time, following some

remarks:

1. If I want to earn money by programming, then for sure I won’t have written a ←↩
fractal generating program

for the Amiga.

ChaosPro 4 / 115

2. What would happen, if ChaosPro would be Shareware?
Other authors have tried to write a fractal generating program (or another program ←↩

) and then were quite angry, because
almost nobody has sent the Shareware fee for their absolutely great program. They ←↩

were so angry, that they
decided to not further develop the program.
Well, I always ask myself, what IQ these people must have. Who should pay the ←↩

Shareware fee for
a fractal generating program? One doesn’t use such a program on a regular basis, ←↩

it’s of no use, one just starts it, because
one has some spare time left and just wants to see and calculate some nice ←↩

pictures, and that’s
all...

3. So I decided, to renounce the Shareware fee from about 5 people. That is so few ←↩
money, that it isn’t worth the effort.

So ChaosPro is further Public Domain, that’s the logical conclusion. This way ←↩
people are more willing to write

mails to me and to suggest further enhancements, and that’s what I want. This way ←↩
I feel, that people are using

ChaosPro, so it makes more fun to enhance it.

1.3 Why should I use this program?

1.2 Why should I use this program?

In other words: What are the advantages of this program over all the other fractal ←↩
creating

programs? Well, if you were content with the other fractalprograms and never ←↩
reached the point,

where these programs weren’t able to satisfiy your needs, then I think it’s ←↩
probable, that another

program would be the better solution for you. This program seems to be a bit ←↩
confusing, because it

has many parameters, i.e. you can make several mistakes, and this can be somehow
discouraging.
If you just want to calculate a few fractal pictures, then this program surely is ←↩

a bit
too large for you. You don’t buy Brilliance or DPaint IV AGA just to paint some ←↩

icons,
do you?

Following a few features of the program:

(Inspired by Mand2000Demo, FractInt, MisterM, MandelMania, Fractal Dynamics, ←↩
Slicer,

MultiFractals, MandelMountains, Fractal V1.3, MandelPlot 24, Mandelsquare, ←↩
SmartFractal,

LyapunoviaV1.5, CloudsAGA, KFP and FractalUniverse)

- Multiwindowing
All fractals are drawn in windows, which you can easily enlarge or smallen by ←↩

using the
sizegadget.

ChaosPro 5 / 115

- Multitasking
For the calculation of each fractal a separate task is created, i.e. you can ←↩

calculte
several fractals at the same time.

- Realtime-effects
Changes of parameters have immediate effects.

- Click and Zoom
Just doubleclick at a point and you zoom in and this point...

- Move the area around
The area of the complex numberplane, from which the fractal is calculated, can be
moved around while calculating the fractal. Just click and drag it with the mouse ←↩

or use the
cursor-keys or the joystick in port 2.

- Systemconform
According to my betatesters the program runs perfectly on:
- Picasso
- Piccolo
- GVP EGS110/24
- GVP Spectrum
- ECS/OCS
- AGA
- Merlin

It runs from OS2.0 upto OS3.1, a screenmode-requester is used to enable to use all
resolutions.

- Formula editor
For all of you, who want to try their own formula.

- Several fractaltypes
- Juliaset
- Mandelbrotset
- Bifurcationdiagrams (Verhulst)
- Dynamic Systems
- Plasma
- Lyapunov-Spaces

- Parameter
Dependent on the fractaltype upto 3 parameterwindows exist.

- Logical Userinterface
The worst example for a program, which normally mustn’t exist: FractInt on a PC.
There exists an Amiga-version by Terje Pedersen (email: terjepe@stud.cs.uit.no), ←↩

which
is a bit better (it uses MUI).

- 3D-Transformations
There exist 3 more windows with parameters just for 3D. Of course I must admit, ←↩

that
the right parametervalues are a bit difficult to find. But the multitasking of the ←↩

program

ChaosPro 6 / 115

(you see immediately the result of a change of a parameter) helps really. You see ←↩
quickly, whether

the value suits or not.

- Animations
Not only simple Zoom-in-Movies, but also Zoom-out-Movies, or any other animation ←↩

based on a parameter,
which continually changes its value. Of course, more than one parameter may change ←↩

its value.
How about a 3D-Anim Zoom-in-Movie into a juliaset, whose parametervalue ’c’ ←↩

changes and the light
moves around?

- 24 Bit
Fractals may be saved in 24 bit.

- Online-Help
Of course contextsensitive ;-)

- Locale-support
Why not?

- Arexx-Interface
Sorry, it made so much fun, I weren’t able to stop ;-)

- and some other small features - really small;-)
+ Filename-Multiselect
+ Menu-Multiselect
+ Colorwheel under OS3.0 while editing a palette
+ Pictures can be saved into the clipboard
+ Fontsensitivity

...and a little bit more...

1.4 Requirements

1.3 Requirements

When I was writing this program, I often had to decide whether I should leave a ←↩
feature aside in order

to allow this program to run even on a badly equipped amiga. Because I think that ←↩
in

the year 1995 it’s time to realize that a 7.09 Mhz-68000 Amiga isn’t state of the ←↩
art,

I’ve decided that this program will run only on better Amigas.

The program needs at least an 68020 with a mathematical coprocessor. Due to the ←↩
internal

multitasking the screen is quickly filled with many windows. So a higher ←↩
resolution which

offers more place is recommended. These many windows also don’t increase the speed
of the system, so a fast Amiga is a good thing...

Because this program has many features, it needs a lot of memory. You should have ←↩
at

ChaosPro 7 / 115

least 2 MB RAM, then you can test this program.

Of course, the version of the operating system must be at least 2.0.

1.5 Installation

1.4 Installation and Deinstallation

Installation is made by the ’Installer’ from Commodore.
If you want to make it by hand, then here you go:
1. Copy reqtools.library to the logical directory libs: , if it isn’t already ←↩

there.
You need at least V38 or above.
2. Copy the directory ChaosPro/ and all the subdirectories to your desired place.
3. Copy the contents of the fonts-directory into your logical FONTS: directory..
.

That’s all. Installation is then finished. To adjust the program to your system, ←↩
start

the preferencesprogram.

If you are looking at the file ’english.guide’, don’t wonder, why AmigaGuide doesn ←↩
’t find all

nodes in this file. It will be translated to the file ChaosPro.guide by the ←↩
preferencesprogram.

While translating unknown links to nodes will be solved ’magically’.

In order to deinstall ChaosPro, just delete the whole ChaosPro-directory with all ←↩
files in it. Please have a look into

the directory libs:, too. Perhaps there is - for some unknown reason - the library ←↩
ChaosPro.library. Delete it...

Normally ChaosPro doesn’t copy any files over your hard disk...

1.6 Author

1.5 Author

Address:
Martin Pfingstl
Dorfen 16 1/5
84508 Burgkirchen
Call.: holiday: 0 86 79 / 62 41 semester: 089 / 28 44 91
(Germany)

EMail: pfingstl@informatik.\tu-muenchen.\de

Many thanks in advance for:
- bugreports
- new ideas
- comments
- no registrations ;-) (ChaosPro is Public Domain...)

ChaosPro 8 / 115

1.7 Concept

II. Programdescription

2.1 Concept

The concept isn’t new, but very useful: Multitasking and multiwindowing over and ←↩
over.

That means, you can calculate as many fractals at the same time as you wish (and ←↩
as your memory allows).

You can work on a palette and calculate an animation, while
an ARexx-program controls some other fractals beeing calculated.
You can read in the online-help, and without closing this window you can ←↩

experience
in another window what you have read.

1.8 PicTask

2.2 The Various Windows

2.2.1 PicTask-Window

List
- ChaosPro offers the possibility, to maintain 5 different lists of fractals. This ←↩

gadget lets
you choose the right list. If you change the list, every fractal related window ←↩

gets closed, every
fractal calculation is stopped and deleted. The sense of this gadget is, that you
can create and work with many fractals, without seeing the other fractals. You ←↩

only see the
active list. For example, user window 1 has a gadget, which converts all frames, ←↩

which would be
created, if the animation would be calculated, into fractals and inserts them into ←↩

the list. There it
makes sense to switch to an empty list, so you don’t get confused about what ←↩

fractal was inserted from
the animation and what was already in there.

Fractal Pictures
- In the viewwindow with the headline ’Fractal Pictures’ all to the program at ←↩

the moment known
fractal pictures are displayed. Every entry has a corresponding data structure ←↩

which contains all parameters
needed to calculate a picture of the fractal. Whenever you start the program, it ←↩

examines the directory
’FractPic’ and loads automatically all fractals it finds there.
See Chapter 2.6 Programdirectories.

Name of a Picture
- Directly below the right listview there is a string gadget, in which you can ←↩

edit the name.
In order to take effect you have to press the return key.

Clear Picture

ChaosPro 9 / 115

- Press this gadget to delete the chosen picture.

Calculate Picture
- If you click onto this gadget, the active entry appears additionally in the left ←↩

listview.
A window is opened and a task created which then calculates the corresponding ←↩

fractal in the
newly opened window. This task runs with a priority of 1 less than the control- ←↩

task. So
controlling functions slow down the speed of calculating the fractal.

Duplicate Picture
- Under some circumstances somebody wants to change a few parameters of a fractal
without changing the old fractal. This gadget duplicates the active entry so a new ←↩

entry
is added and so you can change values and have the old fractal left.

Close Windows
- This gadget closes all windows, which belong to the active fractal. To be more ←↩

precise, it deletes
the task, the fractalwindows and all its parameterwindows.

Setting Previewwidth/-height
- With these gadgets the size of the area, which is calculated first, is defined.
The area is placed in the middle of the window, where in all probability the most
interesting part of the fractal beeing created is hidden. If you set unlogical ←↩

values,
then so preview is calculated. Preview isn’t possible with all kinds of fractals, ←↩

so
it’s possible, that these values take no effect.

Picture settings

3D-Buffertype
Julia- and Mandelbrotsets can be transformed into the 3rd dimension. In order to
get good looking pictures, it’s possible, to allocate a buffer for the results of ←↩

the
3D-transformation. This enables it to save 3D-pictures in 24 Bit. Additionally ←↩

there exist
2 more gadgets in the 3D-parameterwindow number 3, which have some influence on ←↩

the appearance
of the 3D-image. They control, how the incoming light changes the original color ←↩

of the
3D-fractal.

Buffertype
- There are 3 different types for the buffer:
1. No buffer: This choice uses of course less memory than the other ones. But on ←↩

the other hand
you can’t calculate 3D-views of the fractal, because the routines for this force ←↩

the availability
of a buffer. Also saving s IFF-ILBM-picture is only possible in the depth of the
screen.
2. 16Bit-Int: Here for every point a word (16bit) is resersed, in which the ←↩

calculated value is put in.
Here you can choose a 3D-view. Additionally it’s possible to save the fractal in ←↩

any

ChaosPro 10 / 115

depth from 3 to 8 planes and in 24 bit.
3. 32 Bit IEEE Single Precision-Buffer (for people with too much memory): Here for ←↩

every pixel
a whole longword is reserved, in which the exact value of the point is placed in ←↩

the IEEESP-format.
This choice makes it possible, to save the inside area of the julia-/ ←↩

mandelbrotset
in real 24Bit.

Windows
2 choices:
- 1 Window: If a 3D-view of the fractal should be drawn, then it’s drawed in the ←↩

same window as
the 2D-fractal. The 2D-fractal will be overdrawn.
- 2 Windows: If a 3D-view of the fractal should be drawn, then a second window ←↩

will
be opened for this purpose.

3D
And again 2 choices:
- No 3D-Picture: Only the (2D)fractal will be drawn.
- 3D-Picture: After drawing the 2D-fractal all data will be interpreted as heights ←↩

and
a 3D-view will be drawn.

Choice of the palette
Whenever a new window gets active, the program tries to find out, what palette ←↩

should
be used. For this it looks for the fractal, which the window belongs to and sets ←↩

the
corresponding palette.
The program always has a global palette. Additionally there exist two extries in ←↩

the fractalstructure
for palettenames. The one name is ment for the palette to be used for the 2D- ←↩

fractal,
the other name for the palette to be used for the 3D-fractal.
In order to control the behaviour of the program, when a new window is activated, ←↩

there
exist 2 gadgets. If the checkboxgadget is checked, always the global palette is ←↩

used,
independent from the fractal and its 2 own palettenames. This mode is mainly ment ←↩

for such
people like me, who get confused, if suddenly another palette is used, when a new ←↩

window
is activated (I use ’SunWindow’ - created by Bernhard Scholz - this is advertising ←↩

... - for
autoactivating windows...)
If the checkboxgadget isn’t checked, then the cyclegadget right beneath determines ←↩

the
palette to be used for the fractal. ’Own palette’ effects, that the palette is ←↩

used,
which is defined in the fractalstructure. ’Global palette’ effects, that the ←↩

global palette is used, whenever a
window is activated, which belongs to this fractal.

If somebody wants to change the global palette, then he only has to wait, until

ChaosPro 11 / 115

the global palette is used. Then he can use the palettewindow in order to change ←↩
it.

This is exactly what one would expect. So don’t get confused.

1.9 Palettes

2.2.2 Palettewindow

The palettewindow contains all palettes, which the program has found in the ←↩
directory

ChaosPro/Palette/ at startup. There may be whole pictures, in that case the ←↩
colorchunk is

filtered out and added as palette.

At the beginning the palette called ’DefaultMap’ is the active one. If you prefer
another palette, then place it in the directory Palette and change it’s name to
’DefaultMap’. If no palette with this name is existant, then the very first ←↩

palette
is the active one.

If you want to set another colortable, then simply click on the desired entry. The ←↩
change

takes effect immediatly. In order to maintain the 3D-effect of the graphical ←↩
environment

the colors 0 to 3 aren’t affected.

Palettename
- To change the name of the active palette, change it in the string gadget and
leave it with pressing the return key.

Edit Palette
- If you want to edit the colors of the active palette, click onto this gadget.
2 windows are opened, the one which displayes the current values and allows you to
take some actions and the other which shows you the varous colors of the active
palette with a palette gadget. If 256 colors are available on the fractalscreen,
the windows are opened on it, otherwise a new screen called colorscreen is opened ←↩

as
defined by the preferences-program
See Chapter 2.1.3 EditPalettewindow

load and save Palettes
- With these gadgets you can load and save palettes. If you would overwrite an ←↩

existing
palette, you are pleased to confirm your action. When loading a palette, of course ←↩

file-multiselect
is supported, so you can load many palettes at once. Starting with V2.0 ChaosPro ←↩

is also able to load palettes, which were created for FractInt. These
files normally have the suffix ’.map’.

Clear and Duplicate a Palette
- Should I really explain these ?

Coloroffset
- This gadget defines the colornumber of the palette, at which the palette is used ←↩

.

ChaosPro 12 / 115

Example: Somebody has a screen with 32 colors, he sets this value to 30. The ←↩
screen

now gets the colors of the palette beginning at number 30 (screennumber 4) upto
number 57 (screennumber 31). If you change this value continual, then you’ll get
a colorcyling-effect.

Skip
- If this value is set to, as example, 2, then only every 2nd color of the palette ←↩

is used for
the screen. This makes sense for palettes, which actually are made for 256-color- ←↩

screens
and should now be used on, as example, a 32-color-screen. There you could set the ←↩

skip-value to 8
and so using only every 8th color of the palette. So you’ll get an imagination of ←↩

what
the palette would look like on a 256-color-screen.

1.10 Editing a Palette

2.2.3 EditPalettewindow

Actually there are 3 windows. One window for the actions and for displaying the ←↩
values of a

specified color the other for showing the whole palette. The third eventually for ←↩
the colorwheel and the

gradientslider

Colorarea
- Not everybody has the possibility to display the whole palette. Due to this, the ←↩

colorarea-gadget
is existant. It shows with the size and position of the bar, how many colors out ←↩

of which area are
currently displayed in the other window. If you move it around, then automatically ←↩

the colors in the other
window are actualized according to the new position of the bar.

Colornumber
- This gadget shows the current registernumber. If you change it, then the RGB- ←↩

and
HSV-values are updated.

The RGB- and HSV-Slider
- These sliders change the colorvalues. If you change one value in the colormodel ←↩

, the others
in the other model are updated according to changes.

Copy, Exchange, Spread
- ’Copy’ copies the active color to the position, which the user next clicks onto ←↩

, ’Exchange’ exchanges
the colors and ’Spread’ makes a smooth change from the one color to the next ←↩

active one.

Cycling-Mode
- This mode is somehow inconvenient. If you click onto this gadget, then you are ←↩

in a mode,

ChaosPro 13 / 115

in which you can exactly define, what colors should be affected by colorcycling.
This is useful for the mandelbrot, if you want to cycle only the area outside,
because the inside area is colored black. All visible colors are affected by the ←↩

colorcycling,
all grey blinking colors, aren’t affected. Click on a color, and the state of a ←↩

color is changed.
The 3 gadgets ’All’,’None’ and ’Invert’ do exactly what someone expects: ’All’ ←↩

lets
all colors take part on colorcycling, ’None’ no color and ’Invert’ inverts the ←↩

state
of all colors.

Functions affecting an Area
- ’Shrink to’ and ’Shrink’
These both gadgets make it possible, to shrink the palette to less colors. To do ←↩

so,
you choose with the slider the number of planes, and with ’Shrink’ you execute the
action.
- ’Invert Area’
This gadget allows you, to invert an area. To do so, you click onto the gadget, ←↩

then on
the first color of the area, then on the last color of the area.
- ’Copy Area’
Click onto the gadget, then onto the first color, then onto the last color and ←↩

then
onto the first color of the destination area. Overlaying, overflowing etc. areas ←↩

are
affected correctly.

Colors of a Palette
- This window shows the colors of a palette. It has a size-gadget, so you can ←↩

adjust it’s size
to your preferred size.

Colorwheel
People, who have OS3.0, can use the colorwheel, in which they can pretty much ←↩

intuitively
choose the colors. In order to get the colorwheel, one has to add the tooltype ←↩

COLORWHEEL.
Because the colorwheel needs half of the available colors on the colorscreen, this ←↩

method
exists to enable or disable the colorwheel.

1.11 Animationwindows

2.2.4 Animationwindows

With these windows you can calculate animations. For that purpose fractals, which ←↩
may differ

only in continual changeable parametervalues, are defined as keys. At calcalation ←↩
time

the intermediate values between the different parameters of two keys are ←↩
calculated (that’s

why it’s called "continual changeable parametervalues") and as data structure ←↩
given to

ChaosPro 14 / 115

a fractal task which interprets and acts accordingly.
This is a really good method, I think. You can e.g. the parameter c of the ←↩

standard
juliaset in a continual way change, and at the same time you can change the area ←↩

values
and the number of iterations. The result is a zoom-movie into an altering juliaset ←↩

, a zoom and morph at
the same time...
A short, but important note: For information about Palette morphing read here
.

Now lets start describing the gadgets:

Fractal Pictures
- Here the fractal pictures of the PicTask-Window are displayed
again for your convenience.

Anim Keys
- That are the keypositions. An animation is calculated as a continual change from ←↩

one key to another
until the last key is reached.

Actions
- Add Key / Add First
With pressing one of these gadgets the active fractal picture in the ←↩

animationwindow
is defined as a new key and inserted behind the active key or at the first ←↩

position.
While inserting the program checks, whether this picture is suitable, e.g. whether
it is of the same (fractal-)type and subtype as the ones already in the list, and
whether it differs only in continual changeable parametervalues. If it doesn’t ←↩

suit to
the other ones, then an error-report occurs, in some cases with a hint, why it ←↩

failed, and
with the offer to adjust the illegal values to the other ones in the list. By the ←↩

way,
the new key has the same name as the fractal picutre, but it has nothing to do ←↩

with it. The new key
isn’t referenced to the picture, but copied.
That means, that a change to a value of the fractal picture doesn’t affect the key ←↩

with the
same name. This offers a quick method to create an animation. For that purpose
calculate a fractal, insert it as a key, then change a parameter or simply zoom in
and add it as a new key again. Repeat this as long as you wish. Then you only need ←↩

to set
the desired number of frames of the animation and the animation size, then click ←↩

on the
start-gadget, then you can watch TV and let the program work...

- Del Key
Makes, what it says...

- Key Up / Key Down
These gadgets alter the position of a key.

- Key to Pic

ChaosPro 15 / 115

A disadvantage of copying the keys is, that nobody can change a parameter of a key ←↩
. But even looking at

the parameters isn’t possible. A key isn’t a picture, so it can’t be calculated,
so parameterwindows can’t be opend. If you obtain an animfile from a friend, you ←↩

are totally
helpless. You can only calculate it, you are not even able to find out, what ←↩

fractal type this animation
calculates. With the help of this gadget now it’s possible to convert a key back ←↩

to a picture, then
calculate it and change parameters and perhaps delete the old key while inserting ←↩

the new one.

- Start / Abort
If you click on the gadget ’Start’, an animation is launched. For that purpose a ←↩

fractal window
is opend and a task created in order to calculate the fractal. Of course the ←↩

program isn’t blocked
by the animation. You can calculate as many fractals as you wish, only a second ←↩

animation you can’t
launch. In order to make it clear to the user the gadgets are all disabled, except ←↩

the
’Abort’-gadget.

- Load/Save
With the use of these gadgets keylists are loaded or saved (and loaded again by a
friend with a faster amiga...)

Timesettings
The animation system is now oriented more to the time as before. There exists a
definable timeunit, which can be interpreted as the time which a single frame ←↩

stays
onto the screen. Now one sees at once, how long an animation will last and at what
time a key will be displayed.

Moment
These two gadgets, both are read-only, show, at what moment the active key will be
displayed. The one shows the time in seconds from the beginning, the other the ←↩

number
of frames since start of the animation.

relative to the last
The above of the two gadgets, its read only, shows the timedifference to the last ←↩

key,
i.e. how much time lays between the display of the last key and the active key. ←↩

The
other of the two gadgets - it can be altered - shows the number of frames, which ←↩

lies
between the last key and the active key.

total
The two gadgets, both are read-only, show, how long the animation will last, and ←↩

out
of how many frames it consists. The Duration of course is the number of frames ←↩

multiplied
with the timeunit...

Timeunit

ChaosPro 16 / 115

Here you can set the timeunit. Normally this is the value 0.05, i.e. 0.05 seconds ←↩
per

frame, i.e. 20 frames per second. If you alter this value, all times will change, ←↩
but

all frame numbers will be the same. In order to alter the framenumbers, but not ←↩
the

times, one must click onto ’Normalize Time’.

Normalize Time
This gadget sets the timeunit to 0.05, doesn’t alter the moment of a frame, but ←↩

does recalculate
all framenumbers.
Guess, the timeunit is 0.05 and you would like to increase all framenumbers in ←↩

order
to ’smooth’ the animation. Then you have to set the timeunit to 0.1. This results ←↩

in
an animation, which lasts twice as long. But it contains the same number of frames
as before. Then you click onto ’Normalize Time’. This now sets the timeunit to ←↩

0.05.
It doesn’t alter the times, but does recalculate the frame numbers. Because the
animation now lasts twice as long, and the timeunit is the same, twice as many ←↩

frames are needed.
If you want to decrease the number of frames, act accordingly.

Calculate time
This gadget tries to calculate an ideal number of frames between the last key and
the active key. For this purpose it examines all parameters, in which the two keys
differ and calculates a framenumber according to their differences.

Calculate all
Same as ’Calculate time’, but for all keys at once

Others

Buffer
Here you choose the buffer for the calculation of the animation. You need a buffer ←↩

for 3D-animations or 24 Bit.
I recommend using an IEEESP-Buffer for 3D-animations, because otherwise there may ←↩

occur some nasty effects due to
the Integer-Buffer.

Interpolation
Here you can choose, whether the single keys should be interpolated linearly, or
whether a spline should be calculated between two keys (currecntly it’s a cubic ←↩

spline).
In case of linear interpolation there occur some jerk-effects, especially when ←↩

zooming. Well, I personally like this effect...This
will naturally be avoided with the spline-interpolation.

Savemode
Here you can choose, whether the animation should be saved in AnimOpt5-format, so
that the animation can be displayed without problems from any other available anim ←↩

-player,
or whether every frame should be saved as a single IFF-ILBM-picture. In this case
you can define the basename of every picture right after the start of the ←↩

animation.
The single pictures then get the basename and a number appended (the framenumber).

ChaosPro 17 / 115

This choice is needed, because AnimOpt5 isn’t capable of 24Bit-animations. In the ←↩
case of Savemode=pictures

you can choose the planedepth upto 24 Bit.

Width / Height
- With these gadgets you can define the size of the animation. If you define false ←↩

values (too big or too small)
then the values are set to legal ones by the program. If 3D isn’t chosen, these
values are responsible for the size of the 2D fractal window, otherwise they ←↩

define
the size of the 3D fractal window.

Planes
- Some fractal types allow calculation of an animtion with a depth upto 8 planes, ←↩

although
the program runs only o a 6 planes screen or the hardware doesn’t allow 8 planes.
Here you can define, how many planes your animation should use. After that you can ←↩

convert
the animation to your favorite format, HAM6-mode as example.

Startframe&Endframe
These gadgets define the startframe and the endframe. If your computer suddenly
crashes, or if you want to recalculate parts of your animation, you can set these
gadgets to your desired values. If you set ’EndFrame’ to 0, then this is the same ←↩

as
the highest possible framenumber.

3D-Animation
- Some fractal type can be displayed in 3D. If you want this, make sure that this ←↩

gadget has a checkmark. In this case,
2 windows are opened automatically, the 2D- and the 3D-window and the content of ←↩

the
3D-window is saved as animkey.

1.12 CycleControl-Window

2.2.5 CycleControl-Window

This window is ment to give you better control over the colorcycling-feature of
ChaosPro.
There exist 3 gadgets:

Colorcycling
- Switches Colorcycling on/off

Speed
- Sets the colorcycling-speed, range from 20 to 999.

Direction
- Should be cycled upwards or downwards?

1.13 User Defined Windows

ChaosPro 18 / 115

2.2.6 User defined Windows

You can define an infinite number of windows. All windows have a vertikal button- ←↩
gadget-bar.

If you click onto a button, then an Arexx-Script is executed. So you can
add some not implemented features to the program.

The structure of the windows is defined by the ASCII-file "Windows.asc", which ←↩
must

be in the directory ChaosPro/Prefs
It’s structured like following:

WINDOW <windowtitle> <Arexx-Script>
GADGET <gadgetname> <Arexx-Script>
...
GADGET <gadgetname> <Arexx-Script>
WINDOW <windowtitel> <Arexx-Scripts>
GADGET <gadgetname> <Arexx-Script>
...
GADGET <gadgetname> <Arexx-Script>
WINDOW <windowtitel> <Arexx-Scripts>
...
END

The Arexx-Script, that’s placed in the line with the WINDOW-keyword, is executed
every time the window is opened. Please make sure that the structure of this file ←↩

is correct, because
otherwise a guru meditation may occur (although I think, this mustn’t happen).
If you have wrote this file, then you have to translate it by the ←↩

Preferencesprogram.
It creates a file called ChaosPro/ Prefs/ Windows.prefs.
I hope, the compilation-routine detects all possible errors, so a guru meditation ←↩

is somehow
improbable.

1.14 Dockwindows

2.2.7 Dockwindows

At this time the program has 3 dockwindows.

Dock1
No. 1 controls all windows, which can be opened separately for every fractal. The ←↩

effect of each gadget
should be clear, if not, you can try it, then you see it...

Dock2
No. 2 controls all windows, which can only be opened once throughout the program
.

Dock3
No. 3 offers some actions, which can be applied to fractals. You find these ←↩

actions in the menu, too, but I think it’s easier to

ChaosPro 19 / 115

just click onto a gadget than to choose a menu item. The first two gadgets call ←↩
the Undo/Redo-routines of ChaosPro. They are

symbolized by 2 different small fractals, which are (apparently?) in a list. ’Undo ←↩
’ lets you walk back in

the list (arrows point to left), ’Redo’ lets you walk forth (arrows point to the ←↩
right side).

Below these 2 gadgets there are the actions ’Box zoom in’ and ’Box zoom out’, ←↩
below these

a gadget, which executes the routine ’SavePictureToIFF’.

1.15 Formeleditor für Julia/Mandel

2.2.8 Formeleditor für Julia/Mandel

1. Description of the formulas
2. Description of the gadgets
3. The parser and its functions
4. Error messages
5. Description of the ASCII-Fileformat
6. Easy creation of own formulas

ChaosPro now offers a powerful formula editor for Julia- and Mandelbrotsets, so ←↩
you can type in your own formula and create a

Julia- or Mandelbrotset of it.

It’s very useful to first read some stuff about Julia- and Mandelbrotsets. ←↩
Otherwise you will

have serious trouble to understand the following chapter. In fact, I personally
always have some trouble, if I want to create a new formula. It’s quite difficult ←↩

...
As far as I know, the formula editor of ChaosProV2.0 is the most powerful one on ←↩

either the
Amiga, the Atari, the Macintosh and the PC, unfortunately it’s also the most ←↩

complicated
one...

Now let me explain the features of it. After that I’ll explain the gadgets, if
necessary:

ChaosPro divides every formula in some parts. The first part is the initialization ←↩
part.

All formula editors, which I know, have only the ability (or don’t have even this ←↩
feature),

to specify one single initializer. But, just as an example, for the calculation of
Mandelbrotset it’s necessary, to examine the orbits of all critical points. If you ←↩

look at the standard
formula z^2+c, then there’s only one critical point (nullpoint of the first ←↩

derivation), and this is the
0. In order to input this formula, you of course would have to specify only one
initializer, the ’0’. But other formulas of course can have several critical ←↩

points, and all of them have to be examined
to get the real Mandelbrotset. Well, ChaosPro is able to do this...

The second part of a formula is the part about the iteration formulas. This part ←↩
can

ChaosPro 20 / 115

consist of several subparts, too. In order to input the standard Mandelbrotset, of ←↩
course

here again only one part has to be specified, ’z^2+pixel’.
Every iteration element consists of 2 formulas, one formula, which is the ←↩

condition for the iteration,
and the second formula, the iteration function itself. In order to understand the ←↩

whole system,
it is necessary to know how ChaosPro calculates the points:
Let us assume, you have a point z, which is initialized to the first critical ←↩

value.
Then the iteration part starts. At first the condition of the first element is ←↩

evaluated.
If the result is ’true’ (well, not 0...), then the corresponding iteration ←↩

function is applied to
z. Otherwise the next iteration element is taken, the condition is evaluated, if ←↩

it is true, then
this iteration function is applied and so on and so forth. If none of the ←↩

conditions was true, then there’s
some sort of a syntax error (this shouldn’t occur, otherwise the creator of the ←↩

formula made a mistake). The program
then just takes the last iteration element and applied it to z. Seems quite ←↩

strange, doesn’t it?
Well, let me explain the reason for this behaviour:
Barnsley, a fractal expert, examined a special class of fractals. He changed the ←↩

iteration formula while iterating.
For example, if the real part of z is less than 0, then the function (z+1)*c is ←↩

applied, otherwise the function
(z-1)*c is applied. With the help of ChaosPro you now are able to calculate such ←↩

fractals,
too.
The third (and the last) part of a formula is the abort part. Here you can specify ←↩

an abort condition. If this condition is true, then
the iteration procedure is stoped. The ’normal’ abort criteria is something like
sqareroot[real(z) * real(z) + imag(z) * imag(z)] > Bailout. If you know something ←↩

about
biomorphism, then you already know, that it makes sense to change this simple ←↩

criteria.
Now you can specify a whole formula for this purpose. All the ’normal’ abort ←↩

conditions like ’test for infinity’, ’test for
a finite attractor’, etc. are still available. Additionally you can choose ’ ←↩

formula defined’ in parameter window
number 2, and this ’formula defined’ is just the abort criteria you specified with ←↩

the formula. If you choose it, then
the iteration stops as soon as the condition is ’true’. Now you can define your ←↩

own areas, perhaps
abort, if real(z) less than -10 or something like this?

Now let me algorithmically write down, what I said:

How does ChaosPro now calculate a fractal, which uses a user defined formula
?

1. Take the first initialization element

2. evaluate the initialization formula, thus initialize ’z’, thus z = result of ←↩
formula

evaluation

ChaosPro 21 / 115

3. Take the first iteration element
4. Evaluate the condition of this element
4a. if condition=’true’, then apply the corresponding iteration function to ’z’ ←↩

and go to step 5.

4b. if condition=’false’, then take the next iteration element and go to step 4.

4c. if no more iteration elements exist, then apply the last iteration function to ←↩
’z’

5. check for all specified abort criteria, check if MaxIt is reached.

6a. if no abort, then go to step 3

6b. abort, take the next initialization element, if one is available, and go to ←↩
step 2. If no element is there, then the point

is completely calculated.

7. A value was calculated for every initialization element. Determine the minimum ←↩
of this set. Assign this

minimum to the point.

Description of the gadgets

Mode
This gadget determines the contents of the listview.
There are 3 possibilities:
1. All available formulas are shown by their name.
2. All initializers of the chosen formula are shown.
3. All iteration elements of the chosen formula are shown.

Right beneath there is a gadget, which contains the name of the chosen formula
.

4 gadgets right beneath the listview
These 4 gadgets let you add a new formula, delete the active formula, load a ←↩

formula or
save the active formula. Kind of easy, isn’t it?

Gadgets under the listview

Here is the place to change the formula. If you understood the above explanation, ←↩
then there shouldn’t be any questions.

If you didn’t understand the text above, then let me know. I then have to rewrite ←↩
this

section...

Remark:
The first 6 formulas are built into the program, so they are of course faster than ←↩

if you
would generate them with the formula editor. So don’t be confused, if you can’t ←↩

change
them...

2. The parser and its functions

ChaosPro 22 / 115

The parser doesn’t know a difference between A, B, C, ... and a, b, c, ... More ←↩
than 2 parameters aren’t allowed.

The wasn’t enough place for them in the parameterwindow 1. Parameter 1 is always ←↩
the

parameter, which is the first in alphabetic order.

The parser knows the following functions:

+ - * / ^ - Addition, Subtraction, Multiplication, Division, Potenz
sin - the Sinefunction
cos - the Cosinefunction
tan - the Tangensfunction
asin - the Arcussinefunction
acos - the Arcuscosinefunction
atan - the Arcustangensfunction
abs - the Absolutfunction (Absolut value)
ln - the natural logarithm
exp - the Exponentialfunction
log - the Logarithm to the basis 10
sinh - the Sine Hyperbolicus
sqrt - Square Root
tanh - Tangens Hyperbolicus
cosh - Cosine Hyperbolicus
cotan - Cotangens
cotanh - Cotangens Hyperbolicus
conj - the conjugiert complex of a number
real - the real part of a complex number
imag - the imaginary part of a complex number
acot - the Arcuscotangens
asinh - Area Sine Hyperbolicus
acosh - Area Cosine Hyperbolicus
atanh - Area Tangens Hyperbolicus
acoth - Area Cotangens Hyperbolicus
arg - the argument (phase ?) of a number (the angle between 0 and 2*pi)
e - a constant: the ’Euler-number’
i - a constant: the imaginary unit
p - a constant: Pi - the circlenumber
z - this parameter is the variable of a formula and

should be anywhere in the formula...
pixel - the complex number, which corresponds to the screen position..
.
12.44 - a number - is treated as a constant
&& - logical AND
|| - logical OR
! - logical NOT
== - logical EQUAL
>= - greater or equal
<= - less or equal
!= - unequal
> - greater
< - less
t - TRUE
f - FALSE

The parser and its errors

ChaosPro 23 / 115

- "Error in formula detected. Brackets are wrong, I think. Not translated
..."

Here you should examine your brackets. The parser encountered the end of the ←↩
formula while

not all the opened brackets were closed, or it encountered a closing bracket, ←↩
which doesn’t match to

any opening bracket.

- "Error in formula detected. There’s a character I don’t understand. Not ←↩
translated

...

Here the parser encountered at the beginning of the translation process an unknown ←↩
character like

"~" and had stopped immediatly.

- "Error in formula detected. There’s something wrong with the operators or the ←↩
syntax. Not

translated..."

This error mustn’t occur. If it does, send me a mail with the corresponding ←↩
formula.

- "Formula too complex. More than two parameters aren’t allowed. Not translated
...

This error message should be clear.
Except z you can only have 2 more parameter, consisting of a letter except e, i, p ←↩

, z,
...

- "Formula error. Number of operators doesn’t match the number of the operands. ←↩
Not translated...

This error means that during a test-calculation of the formula there were operands ←↩
left.

or during this test suddenly no operand were left to perform the operation defined ←↩
by

the operator. This sounds a bit complicated, so I show you now a few examples, ←↩
which provocate

this error:
a) a**b
Here now the program tries a test-calculation. There are 2 operators, two ←↩

multiplications.
Always 2 operands are multiplicated together to form a result. One says, that ←↩

multiplication
is a dyadic operation. To get a correct result, there have to be 3 oprands, but ←↩

there are only 2, called
’a’ and ’b’. So here are too many operators compared to the number of operands.
b) b b
Here now is no operator available, but 2 operands. The parser starts a test- ←↩

calculation, has finished
immediatly and regicnizes that not only one operand is left which it would ←↩

interpret as the result, but two
operands. So there are now too many operands in the "formula"...

ChaosPro 24 / 115

Description of the ASCII-Fileformat

The following text contains an example file, which describes a formula. This file ←↩
can be

loaded into ChaosPro without any changes, but it’s of no use, because it should ←↩
serve as an example for the possibilities

available in such a file.

The first 4 characters must be CPFR, these characters stand for "ChaosPro FoRmula"
...

CPFR
Easy_Formula That’s the name of the formula, simply a string, which mustn’t ←↩

contain any
white spaces.
{
Here you may place some comment, too. ChaosPro simply reads until it encounters ←↩

the next
bracket.
{ 0 z*z+c } These elements define the different critical points. Mostly ←↩

you’ll find here
only one element. In order to show how to define more than one critical point, ←↩

this example here defines
2 such points, 0 and z*z+c...
{

Real(z)<0 z^2+c
z<0 3^z-c

} These lines contain the different iteration rules. Iteration rules are pairs of ←↩
conditions and iteration functions, i.e. pairs of strings,

the first string beeing the condition and the second string the iteration function ←↩
.

{ z*z<8 } At the end you have to define the abort criteria. After the following ←↩
closing bracket the next formula may start with

the name, etc., just as this formula here...
}
---- end of file ----

The routine in ChaosPro, which reads this format, always reads only whole strings ←↩
as

elements. If it doesn’t need any more strings, then it reads characters, until it
encounters a bracket. For example due to this there only must be a white space ←↩

between the formula
name and the comment after the name. ChaosPro reads the string, then wants a ←↩

bracket and so reads characters, until the bracket occurs, so doesn’t pay any ←↩
attention

to the comment after the formula name.
One problem is left: If an error is encountered in the formula file, then ChaosPro ←↩

only reports, that there is something wrong. It doesn’t tell you
the exact location.

Easy creation of own formulas

It seems as if there are quite few people out there, which can handle the formula ←↩
editor

ChaosPro 25 / 115

of ChaosPro. Due to this I now try to explain in an easy manner, how to generate ←↩
own

formulas.
Just to show you, how easy a formula is, I wrote down in the following paragraph, ←↩

how the standard Mandelbrot formula
looks in ASCII-format:

---- Start of file ----
CPFR
Mandelbrot
{

{ 0 }
{ T z*z+pixel }
{ abs(z)>16 }

}
---- end of file ----

Now, what happens in this formula? Well, the name of the formula is set to ’ ←↩
Mandelbrot’, the

critical value is set to 0 (if you don’t know, what the critical value is, then ←↩
don’t worry about this,

just set it to 0 and see, what happens...). This leads to the mathematical correct ←↩
Mandelbrot set. If you

are interested only in nice images, then you could change this value, you could ←↩
for example set it to 1, or

to sin(pixel)/2 or anything other, what comes to your mind. But please note: ’z’ ←↩
shouldn’t occur in this formula. ’z’ will be defined by this

formula, i.e. ’z’ is undefined and will be set to the result of this formula, for ←↩
example z:=0, or z:=1 or z:=sin(pixel)/2...

Well, after that the iteration rules follow. Either you have realized all the ←↩
stuff a

few chapters above, then you know, what this ’T’ means, or you didn’t get it ←↩
totally, then simply remember:

’T’ stands for the logic value ’TRUE’, just write it down at this location to ←↩
force ChaosPro

to use the following iteration function, which must be separated by the ’T’ ←↩
through a space. Then the

iteration function is defined, in this example ’z*z+pixel’. Of course you can use ←↩
other iteration functions at this point, how about

z^3+pixel, z^4+pixel, exp(z)-z+pixel, or any other function, which looks crazy ←↩
enough?

At last you have to provide the abort criteria, which can be defined just as you ←↩
like. In the case of the standard Mandelbrot

set one simply takes abs(z)>16 as the abort criteria. But please note, that you ←↩
have to choose this criteria in the parameter window 2.

There you must make sure, that the only abort criteria, which is checked, is the ’ ←↩
formula defined’ one...Of course you can try other combinations, if you

know, what you do.
You can change the abort criteria to any other fancy formula, for example the ←↩

formula exp(z)*sin(z)>1 is
quite interesting, although from the mathematical point of view this formula doesn ←↩

’t make any
sense, but who actually cares?

The most important part of a formula is the iteration function. It’s quite ←↩
probable, that you have some difficulties in

ChaosPro 26 / 115

finding other interesting formulas. Due to this I now want to describe a big class ←↩
of meaningful

formulas for use in ChaosPro. Fractal generating programs in general and ←↩
especially ChaosPro are

very suitable to illustrate the Newton method for determining the null points of a ←↩
given function f. Fractal programs are predestinated to show the basin

of attraction of every root (null point) of f. All you need to know is, how to ←↩
derive a function f.

The Newton method looks like this:

---- Start of file ----
CPFR
Newton_Test
{

{ pixel }
{ T z-f(z)/f’(z) }
{ abs(z)>16 }

}
---- end of file ----

The abort criteria is of no use. The only valid (well, from the mathematical point ←↩
of view) abort

criteria is a fixed point of the iteration function z-f(z)/f’(z), what is just the ←↩
same as a null point

of f. So you have to open parameter window 2 and choose ’finite’ as the only abort ←↩
criteria. (Do it!!)

The initialization is simply ’pixel’. Now you have to choose a function f(z). You ←↩
have to calculate

f’(z), the first derivation of f. After that you could simplify the expression z-f ←↩
(z)/f’(z), so ChaosPro

will be faster in calculating the expression.
Just some examples for f:
You could define f(z):=z^3+2, which gives f’(z)=3*z^2, which gives the iteration ←↩

function
z-(z^3+2)/(3*z^2)
Or you choose f(z)=sin(z) ==> f’(z)=cos(z), so the iteration function is defined ←↩

as
z-sin(z)/cos(z)
Or you choose f(z)=sin(z)*z ==> f’(z)=sin(z)+cos(z)*z, so you have to insert z-sin ←↩

(z)*z/(sin(z)+cos(z)*z) in the
formula

You will realize this, if you start creating your own formulas using the scheme ←↩
above.

If you have written the formula, then save it as an ASCII-file and load the ←↩
formula into ChaosPro. After that you can enhance the formula using

the internal parser window of ChaosPro.

One important note at the end: The loop variable ’pixel’ MUST be in every formula, ←↩
either

in the initialization part or in the iteration part. That’s clear, because ’pixel’ ←↩
is the only value, which changes

from one point in the window to the other. If ’pixel’ doesn’t occur, then ChaosPro ←↩
will calculation the same iteration sequence for

every pixel in the window, thus the whole window will be single colored (except ←↩
you have a

ChaosPro 27 / 115

Pentium (TM)...).

1.16 Formula editor for IFS

2.2.9 Formula editor for IFS

Again I assume, that you know about the theoretical basis of iterated function ←↩
systems. Otherwise please read

the chapter about this topic.

Well, the goal is, to define a system of affine transformations, where every ←↩
affine transformation

has a probability assinged, which determines, how often this transformation is ←↩
used.

ChaosPro now is able to calculate the attractor of such an IFS.

Description of the gadgets
The listview of course lists all currently known IFS. Above this listview there is ←↩

a gadget,
which shows you the name of the currently selected IFS and which lets you change ←↩

this
name.

Right beneath there are 5 buttons, which do the following:
1. Add a new IFS. After you click onto this button, you are prompted for the ←↩

number
of affine transformations of the IFS. After the creation of a new IFS the number ←↩

of
transformations can be changed only indirectly by cloning an IFS.

2. Clone the currently active IFS. Again the user is prompted for the desired ←↩
number of

affine transformations of the new IFS. The values of the active IFS are ←↩
intelligently

copied into the newly created IFS, that means, if there are less affine ←↩
transformations, then

of course not all transformations are copied, and if there are now more affine ←↩
tranformations,

then all transformations are copied and all the values of the unused ←↩
transformations are set to

0.

3. Load an IFS from a storage device (well, your harddisk...).

4. Save the IFS to a storage device.

5. Delete the currently selected IFS.

If you have specified too few affine transformations while adding a new IFS, then ←↩
the only possibility to change this is,

to clone the IFS and now specify more transformations.

Below the 5 buttons there is a slider, which shows the number of the ←↩
transformation,

ChaosPro 28 / 115

which is currently shown. Just move it around to see the other transformations. ←↩
Below the

slider there is the gadget, which shows the probability, with which the ←↩
transformation is

chosen.

The above part of the window contains a 3x3-matrix, which is responsible for the ←↩
rotation and scaling.

If you just want 2D-IFS, then of course only the upper left 2x2-matrix is ←↩
interesting. Set the third row and

the third line to 0. Right the matrix there is a vector mit 3 elements, which is ←↩
responsible for

the displacement. Again, if you just want to create a 2D-IFS, then only the upper ←↩
2 elements are of interest,

the third element should be 0.

One additional feature has been added. You can assign a variable (four variables ←↩
are available) to an element

of the matrix, the vector or the probability, rather that assigning a fixed number ←↩
.

This really makes much sense, because the parameter window number 1 contains ←↩
gadgets for 4

variables ’a’, ’b’, ’c’ and ’d’. If you want to examine, what happens, if one ←↩
constantly changes

the first component of the vector, then it is desirable to calculate an animation ←↩
about this.

But the whole animation system doesn’t know anything about formulas, it only ←↩
operates on

fractals and their data structure. It would be quite difficult to change the ←↩
animation system

to operate on formulas, maily because formulas can change not only in values, but ←↩
rather in size,

too!
So the animation system can only operate on values, which are displayed in the ←↩

parameter windows.
And this is the reason for the implementation of variables in the formula editor.
You now simply could specify the variable ’a’ as the first element of the vector,
then change ’a’ in the parameter window 1, add some key frames and then you could
start the calculation of the animation.

Unfortunately you can only type floating point values into the floating point
gadgets of the formula editor. So you can’t simply write ’a’ into it. Instead of ←↩

this
the variables are coded as numbers. Instead of ’a’ you simply write ’100’, instead
of ’b’ you write ’101’, instead of ’c’ ’102’ and instead of ’d’ ’103’. Of course ←↩

this
means, that 100, 101, 102 and 103 can’t be used as normal numbers. But that should
not be a problem. Just write 100.0001, 101.0001, etc.

1.17 Formula editor for L-Systems

2.2.10 Formula editor for L-Systems

Again I assume, that you know about the theoretical basis of LSystems. Otherwise ←↩
please read

ChaosPro 29 / 115

the chapter about this topic.

You’ll find a listview in this window, which shows all formulas of type LSystem. ←↩
And again, above this listview

there is the gadget, which shows the name of the formula, and which you can change ←↩
...

Below the listview there are 5 buttons:
1. ’Add’: This adds a new formula of type LSystem to the list. The user is ←↩

prompted for the number of ’rules’, which he wished, should his
formula have. After that the user is prompted for the maximal entry size of a rule ←↩

. Of course, this determines the
size of the formula on hard disk (if saved) and in memory, so don’t set this value ←↩

artificially high. But keep in mind,
if this value is too small, then it’s quite annoying. You just type in a rule, ←↩

press return, and a requester says, that the rule is
too long...You then have to clone the formula. You then can choose higher values
.

2. ’Clone’: This button clones the currently active formula. Again the user is ←↩
prompted for the number of rules of the formula and

the maximal entry size. The formula, which is to clone, is then copied into the ←↩
new formula.

If you have made a slight mistake while adding a new formula, that means, you have ←↩
specified a too small

number of rules or a too small entry size (or a too big one...), then you simple ←↩
have to clone the formula. Correct these

values, then delete the old formula, if you don’t need it any more.

Load, Save, Delete should be quite clear. If not, mail me, ok ? ;-)

The lower part of the window then allows you to define the formula. This firstly ←↩
is the so called ’axiom’,

then the angle, which a ’+’ or a ’-’ add or subtract, below this a slider, which ←↩
chooses the rule, which

is shown below. A rule always has the form <Character>=<String>, don’t use spaces
!

Well, lets come to the commands, which ChaosPro understands:
(Just imagine a turtle, which can rotate itself, change the color, move forward ←↩

and make
such things...)

F: Draws a line into the actual direction using the actual color of the actual ←↩
length.

f: Same as ’F’, but doesn’t draw the line (well, ’F’ draws, ’f’ moves...)
+: Rotates the turtle using the actual angle counter clock-wise. At the beginning ←↩

this
is the angle specified in the formula editor window.
-: Makes the same as ’+’, but rotates the turtle clock-wise.
[: Pushes all changeable values - the length of a step, the color, the position, ←↩

the direction, etc. onto
a stack
]: counter part to ’[’, restores a state of the turtle from the stack, i.e. the ←↩

turtle gets a new
position, a new direction, a new color, etc...
|: turtle turns back, it rotates by 180 degree...

ChaosPro 30 / 115

Special commands:
’a’, ’l’ and ’c’: These commands affect the angle (’a’ for ’Angle’), the length of ←↩

a step of the turtle (’l’) and the color (’c’ for
’Color’).
Of course, there must be number or something like this after these commands in ←↩

order to change the values. Otherwise the commands would
be useless. In order to enable a fast processing of a formula, the format of the ←↩

numbers, which follow the commands,
is very strict defined. It would cost a huge amount of time to convert a number ←↩

into a computer
readable form.

So the following rules exist:
- Either a number of the form <xx> follows the command, then this is interpreted ←↩

as <Character> = <xx>
Example: a12 or a03 ==> a=12 or a=3 (you MUST write a03, you MUSTN’T write a3!!
)
- Or: A ’+’ or ’-’ and after that a number of the form <xx>, then this is ←↩

interpreted as <Character> = <Character> + <xx>
Example: a+02 or a-13 ==> a=a+3 or a=a-13
- Or: A ’*’ or ’/’ and after that a number of the form <x.x>, then this is ←↩

interpreted as <Character> = <Character> * <x.x>
Example: c*1.3 or c*0.1 ==> c=c*1.3 or c=c*0.1

Annotation:
1. The command ’a’ doesn’t rotate. It just affects the rotation angle used by ’+’ ←↩

and ’-’
The turtle can be rotated only with the commands ’+’ and ’-’, which use the ←↩

rotation angle.
2. Instead of ’a’,’l’ and ’c’ you may use ’A’, ’L’ and ’C’.

1.18 Outputwindow

2.2.11 Outputwindow

This window will display some additional information sometimes. The intention was, ←↩
that

sometimes ChaosPro knows something, which it would like to mention, perhaps if the ←↩
user

saves a 24 bit fractal, but outside coloring is set to ’Iteration’. To put up a
requester is a bad idea, because then the user MUST react to it, which is somehow ←↩

annoying.
So now the outputwindow will show some remarks to the users actions, if ChaosPro ←↩

has to
make some remarks...

1.19 Network window

2.2.12 Network window

The listview shows all tasks, which are currently known to ChaosPro and therefore ←↩
are available

ChaosPro 31 / 115

for calculating a fractal.
Every single task can be disabled or enabled. But changes affect only fractals, ←↩

which are
calculated after such a change.
The other entries contain useful information like the runtime of a command from ←↩

ChaosPro to
the task, a speed rating (an A4000/040 with 25 Mhz has around 5800 units), the CPU ←↩

, the FPU and
the amount of free memory. The last entry contains information about the total ←↩

number of calculated pixels,
followed by the number of pixels calculated by the current task, followed by the ←↩

same number, expressed
in percent of the total number of calcualted pixels.
For more information about network, etc, please read chapter 2.15, section about ←↩

the
Network calculation of ChaosPro.

1.20 2D/3D-Fractalwindows

2.3 Fractals

2.3.1 The 2D/3D-Fractalwindows

In the 2D-fractalwindow the 2D-fractal-picture is displayed. It corresponds always
to the actual parameterset, so every time a value is changed, it’s calculated ←↩

again.
The 2 dynamic systems are already 3D-fractals, they are always shown in the 2D- ←↩

fractalwindow.

The following actions are possible (except for type=Plasma):

1. Cursor-keys or Joystick in port 2
If you press one of these keys, the fractal-picture is shifted 8 pixels to left/ ←↩

right/ up/
down.

2. Spacebar or fire on joystick in port 2
This zooms in the fractal. If enough memory is available, then a short zoom-in- ←↩

movie is
calculated by scaling the picture.

3. Clicking onto the fractal and moving the mouse around
"Grabs" the fractal and moves it around.

4. Doubleclick onto an interesting detail of the fractal.
This action zooms into the fractal and brings the place, onto which you have ←↩

double-clicked,
at the middle of the window.

In the 3D-fractalwindow always the to the parameters corresponding 3D-fractal is ←↩
displayed.

This 3D-view is only possible with julia-/mandelbrotsets.

ChaosPro 32 / 115

With dynamic systems (that are already 3D-fractals) and with bifurcationdiagrams ←↩
it’s not possible to calculate a 3D-view.

(What should be drawn as a 3D-view of the bifurcationdiagrams ?)

All other not supported key-presses are transmitted by the keyboardcontrol- modul
to the datawindow of the fractal and if this window also doesn’t understand the ←↩

key,
then the events are transmitted to the parameterwindows. This makes it possible to ←↩

press
the shortcut for increasing the iteration-value in the fractal-window which doesn’ ←↩

t understand this and
transmits it to the parameterwindow. I’ve built in this feature, because there was ←↩

always
the wrong window the active one.

1.21 Juliasets: Theory

2.3.2 Julia- and Mandelbrotsets

2.3.2.1 Theory: Juliasets

see also: 2.3.2.2 Theory: Mandelbrotsets

In the following I’m refering to the standard formula f(z)=z^2+c.
To create a juliaset, the complex number c is changeable at the beginning, but ←↩

fixed during iteration.
Every point in the window corresponds to a complex number out of the complex ←↩

number-plane. The area of the complex
plane is defined by the area-values in the parameterwindow 1.
The question is now, what happens, if you initialize z with the to the screenpixel ←↩

corresponding complex
number and then applies the formula in an iterativ manner.
So:
z=to the screenpixel corresponding complex number
z1 = f(z) = z^2+c
z2 = f(f(z)) = f(z1) = z1^2+c
z3 = f(f(f(z))) = f(z2) = z2^2+c
...

The juliaset consists of all points, which don’t lead to an attractiv set of ←↩
points, in other words

(contrapositiv), all points, which don’t belong to the juliaset, are attracted by ←↩
another point

called attractor, or, to be more general, are attracted by a set of points, a ←↩
cyclus.

This means, that the juliaset isn’t this fantastic colored picture, but the black, ←↩
booring area.

All the points, which are coloured, are the points, which lead to an attractor, ←↩
and so they don’t belong

to the juliaset.

critical points: f’(z)=0, i.e. 2z=0, i.e. z=0
fixed points: z=f(z), 0.51sqrt(0.25-c) and z=infinite

ChaosPro 33 / 115

- Fixed points and Eigenvalues

The interested reader of course has checked it: The juliaset is determined mainly ←↩
by the

attractiv points, points, which solve the equation z=f(z), the fixed points. It’s ←↩
possible,

that a point z0 is a fixed point, but it’s not an attractiv point, i.e. if a point ←↩
is

very close to z0, then it ’flees’ away from z0 under some circumstances. So now
the question is, when is a fixed point z0 attractiv and when not. To decide this,
you only have to calculate f’(z), you have to differenciate f(z). In this case
f’(z)=2*z. If you then take a z very close to a fixed point z0 (really very close, ←↩

infinite close to z0),
and calculate f(z), then you recognize, that approximaly the following is right:
|f(z)-z0|=|f’(z0)*(z-z0)| (compare it with the equation of the tangente in the ←↩

point z0)
So you now recongnize, that attraction or repulsion depends on the absolut value ←↩

of f’(z0), the so called ’Eigenwert’
of the fixed point z0. If |f’(z0)|<1, then the distance of f(z) and z0 is shorter ←↩

than
the distance of z and z0, so z0 is attractiv. If |f’(z0)|>1, then the distance is ←↩

greater, z0
is repulsiv. If |f’(z0)|=1, then the fixed point is neutral. In this case many ←↩

other interesting
things may occur.
In the standard formula f(z)=z^2+c you get the fixed points by solving the ←↩

equation
f(z)=z, i.e. z^2+c=z.
The 2 results are:
z1=0.5+sqrt(0.25-c)
z2=0.5-sqrt(0.25-c)

So if you want to calculate an interesting juliaset, you have to choose ’c’, so ←↩
that the Eigenwerte

of the fixed points are less than 1.

Due to theoretical reasons the infinite point has to be considered as an ←↩
attractive fixed point, although

it’s clear, that in practice this ’point’ isn’t attractive. To calculate the ←↩
Eigenwert of infinite

isn’t much intelligent. It’s always an attractive ’fixed point’. Due to this, most ←↩
of the other fractal

creation programs only check a point, whether it is attracted by the infinite ←↩
point, guessing, that it’s

the only one. Well, this produced nice pictures and that was all they wanted.

All the above mentioned can be made a bit more complicated. At the beginning I ←↩
mentioned

that not only points can be attractive, but also a set of points, a cyclus with a ←↩
specific

lenght. This is as example a set of 3 points (cyclus lenght is equal to 3) z1, z2, ←↩
z3 which fulfil

the following:
f(z1)=z2 f(z2)=z3 f(z3)=z1
altogether: f(f(f(z1)))=z1

ChaosPro 34 / 115

If you use f with z1, z2 or z3 three times, then again the result is z1, z2, or z3 ←↩
.

With this program you can also check and search for a cyclus. But don’t expect me ←↩
telling

you the theory, because not even I do understand it...

A bit more about juliasets you can find in the following chapters, where the ←↩
various

parameters are discribed. There hopefully you realize, how this program works in ←↩
order to

calculate the pictures.

If you haven’t understood this chapter, then the probability is relativ high that
you sit in front of the monitor looking at a black area and wondering why this isn ←↩

’t
a nice, good looking, colorful fractal.

Well, and now something interesting especially for the mathmaticians:
Newton’s Way for Estimating Nullpoints

Newton (who other could it be ?) was engaged in getting an approximate value for ←↩
the nullpoints

of polynomials P(z). The formula he found was:
f(z)=z-P(z)/P’(z)
At the beginning you initialize z with a value, then you apply the formula in an ←↩

iterativ manner to z again and again
until the functionvalue doesn’t change any more. The problem which Newton hadn’t ←↩

solved
and which even now isn’t solved is, what initial value you have to choose for z so ←↩

that
this method converges, and can you in any way get all nullpoints of the polynomial ←↩

with this
method?

This problem isn’t solved at this time. To get a picture, they use the computer.
If you check the method out you will find that it’s an ordinery juliaset just with ←↩

a user
defined formula.
Let be P(z)=z^3+2, so P’(z) equals to 3*z^2
As f(z) you have to define z-(z^3+2)/(3*z^2). Then you have to compute the ←↩

juliaset of this.
Please note, that nowhere in this formula is a variable parameter c, so it’s ←↩

totally booring, to calculate
the mandelbrotset of this. To get the desired picture, you now have to say to the ←↩

computer that
it should look for finite attractors (these are the nullpoints of the polynom P(z) ←↩

). So you have to
click on the corresponding gadget in the parameterwindow 2. The resulting image is ←↩

the so called
’Basin of Attraction’ of the polynom. If you then open the datawindow, you will ←↩

find
the endpoint of the calculation beneath ’End:’. This is the finite attractor, a ←↩

good approximation
for a nullpoint of the polynom. If you move the mouse pointer around, you can see ←↩

very clearly, what
initial value for z results in what nullpoint.

ChaosPro 35 / 115

We now have a polynom of degree 3. There are only 2 cases possible: Either are all ←↩
3 nullpoints real, or

there is a real nullpoint and 2 complex which are conjunct complex to themselves.
The second possibility you can see in the image as you can really easy check out.
If you now look at the fractal you are recognizing quickly why the mathematicians ←↩

have so big trouble with so
easy to express problems.

Hint:
The tranformation of this fractal into the 3th dimension isn’t very attractiv. ←↩

That’s because for finite attractors
the continuous potential method in my implementation fails.

1.22 Mandelbrotsets: Theory

2.3.2.2 Theory: Mandelbrotsets

See also: 2.3.2.1 Theory: Juliasets

Mainly there are 2 different types of juliasets:
Type A) The juliaset is ’dusty’, i.e. it consists of infinite many incoherent ←↩

points.
Type B) The juliaset is ’coherent’, i.e. it consists of a variety of lines, areas, ←↩

or something like this.
The type of a juliaset is determined by the parameter, in the case of the standard ←↩

formula
f(z)=z^2+c it is determined by ’c’.
The mandelbrotset now shows graphically, for what values of ’c’ the corresponding ←↩

juliaset is
’dusty’ or ’coherent’.
Julia, the inventor of the juliasets, has thought out a trick to decide, wheater ←↩

the juliaset is
dusty or coherent without calculating the whole image. To do this, only the ←↩

critical points are to examine.
The critical points of a formula are the points, for which f’ is equal to 0. If f(←↩

z)=z^2+c, then
f’(z)=2*z, so the only critical point is 0. To build the mandelbrotset all ←↩

critical points have to be examined.
This version of the program can’t do this. It can only examine one critical point ←↩

at a time. Due to this, the resulting image
isn’t correct, if more than one critical point is existant. To get the right image ←↩

, you can go the following way:
Let the program examine the critical points one after another and save the images ←↩

to disk.
If you have done so, then start a paintprogram and paste the pictures to one ←↩

picture together.
The result is the correct mandelbrotset.

So a mandelbrotset is made like follows:
Dependent on the area out of the complex plane you initialize c with the to the ←↩

screenpixel corresponding
complex value and z with the critical point. Then you iterate the formula, i.e. ←↩

you calculate f(z), then f(f(z)), etc.
If the result leads to infinite, then the juliaset determined by the value of ’c’ ←↩

is dusty. If it leads

ChaosPro 36 / 115

to a finite attractor - a point or a cyclus - then the coresponding juliaset is
coherent.

Due to this the mandelbrotset is a kind of a landscape for all the juliasets you ←↩
can

calculate from a formula. Very often it happens that you have big troubles setting ←↩
a

suitable value for ’c’ to calculate a nice juliaset. In this case you only have to
calculate the corresponding mandelbrotset. In this image you have to look where ←↩

your
booring parametervalue lies and so you have the answer to the question, why the ←↩

image
isn’t nice. A solution now is, to choose a value for ’c’ which lies at the border ←↩

of the mandelbrotset.
There you can expect that the corresponding juliaset doesn’t know exactly, if it ←↩

is dusty or coherent
(of course, the juliaset knows it, but not the computer). Inside the mandelbrotset ←↩

the
juliaset is mostly a big ugly area. Outside it’s dusty, almost all points don’t ←↩

belong
to the juliaset, but lead very quickly to an attractor.

For a very simple choose of the parameter of a juliaset see the menuitem Set ←↩
Juliaparameter

1.23 2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets

2.3.2.3 Parameterwindow 1

DeepZoom
The most important stuff at the beginning: Starting with V3.0 ChaosPro has the ←↩

feature
to zoom in more often than in previous versions. Using V2.0 you were able to zoom ←↩

in about
50 times, then the accuracy of the mathematical coprocessor was reached. From then ←↩

on all
arithmetical operations were so inaccurate, that you weren’t able to work with ←↩

ChaosPro in
a reasonable way. Now additional mathematical routines are built in, which allow ←↩

it, to zoom
in about 130 times. If you want to zoom in more often, then drop me a mail. I only
have to write an iteration routine, the numbers are already handled with about 240 ←↩

decimal digits, which should be
enough for the future.
Unfortunately the Deepzoom capabilities have some serious limits:
You can only use them, if you calculate a standard julia- or mandelbrot set. Other ←↩

formulas aren’t supported.
The other parameters mustn’t be changed, too, well, they may be changed, but they ←↩

don’t
work any more and I recommend not to change them. The following parameters work
perfectly and you may change them:

- Parameter window 1: all parameters. The area values and the 1st parameter, the ’ ←↩
c’ of the standard juliaset or the initial value of the standard mandelbrot set ←↩
,

ChaosPro 37 / 115

are internally represented in Deep-format, i.e. you may choose numbers with about ←↩
240 digits after the decimal

point.

- Parameter window 2: Outside coloring must be eiter ’Color’ or ’Iteration’ or ’ ←↩
CPM’, inside coloring must be

’Color’. The abort conditions must be set, so ChaosPro only checks for ’infinity’. ←↩
Bailout is automatically set to 3,

regardless what’s in the gadget. Bailin doesn’t have any function.

- Parameter window 3: Circle inversion, biomorphy and decomposition aren’t ←↩
possible. Virtual drawing

should be possible.

The 3D parameters are independent of all the deepzoom stuff and continue to work ←↩
in

any case.

One annotation for the (unintentional) wrong use of deepzoom: Assume, you ←↩
calculate a zoom in

animation and you zoom in so far, that ChaosPro automatically switches from the ←↩
FPU code

to the (quite slow) more accurate deepzoom code. Most probably you didn’t change ←↩
the bailout

value, so it is 16. The animation now will contain a sudden ’jump’ in exactly that ←↩
moment, in

which ChaosPro switches from the FPU code to the deepzoom code. That’s clear, ←↩
because then

suddenly the bailout value isn’t 16 any more, but is set to 3, and this you will
notice. Other programs like Mand2000 solve this problem in a quite easy way: They ←↩

don’t allow to
change the bailout value and additionally set it to 2.

Perhaps you may wonder, why I’m not able to implement deepzoom in a ←↩
straightforward

manner, so it works with all combinations of parameters, like Mand2000 is able to.
But you always must imagine, that there are plenty of parameters, which Mand2000 ←↩

doesn’t have. I would
have to write a huge amount of routines, but I don’t have neither the time nor the
delight.

You needn’t be surprised, if ChaosPro gets very slow, if you zoom in very far. ←↩
That’s normal.

That’s the price you have to pay, if you want to calculate with such quite ←↩
accurate numbers. But other programs have

the same difficulties.

One annotation: ChaosPro now can only handle numbers between -4 million to +4 ←↩
million.

To be more exact, the number format is the following: 1 bit sign, 23 bit before
the decimal point, 97 bytes after the decimal point, altogether 100 bytes for a
single number...

Parameter

ChaosPro 38 / 115

- Dependent on the formula there are 0, 1 or 2 complex parameters choosable. These ←↩
are to define here.

If 2 parameter are to be chosen, then the first parameter matches the parameter ←↩
which comes

first in the alphabet. The parameter is for juliasets decisive because these ←↩
define the exact locations

of the fixed points and the Eigenwerte. They are to be defined in respect to this.
For a simplified choose of the parameter it would be very comfortable, if it would ←↩

be shown
in the mandelbrotset. This can be done by choosing the menuitem Set Juliaparameter ←↩

. The
mandelbrotset of z^2+c as example is a kind of a landscape for all juliasets z^2+c ←↩

.
Interesting juliasets can be found at the border of the mandelbrotset.

The first parameter wasn’t changeable until V2.0. Now you can change it. Normally ←↩
this value has to be set

to the critical value of function, and this is 0, if z^2+c is used. But people ←↩
found out, that other values

produce nice results, too, although mathematically then the object doesn’t make ←↩
sense. But who actually

cares? ;-)
Mandelbrot sets, which result from a wrong critical value, are called pseudo ←↩

mandelbrot
sets. One special value has a special meaning: Because this parameter can be ←↩

changed,
there would be no possibility for ChaosPro to recognize, whether you want the real
critical value as before or whether you want to calculate a pseudo mandelbrot set.
So if you set this value to 10, then ChaosPro recognizes this and calculates the ←↩

default
critical values.

Iterationen
- The quality of a julia-/mandelbrotset depends widely on the iterationvalue. The
higher the better, but also the slower the calculation. With the slider you can
easily change the value without the keyboard. If you click onto it, then it adds ←↩

its value
to the actual iterationvalue. If you then let it, it snaps back to the ←↩

nullposition.
Alternatively you can make a greater change of the iterationvalue by directly ←↩

inserting the
new value into the gadget. After that you must leave the gadget by pressing the ←↩

return- or the tab-key.
As described in the theoretical chapters, all points must be filtered out, if they
are of an ordered type, i.e. if they are attracted by a set of points (juliaset) ←↩

or
if they are attracted by the infinite attractor (mandelbrotset).
Due to the optical appearance these ’ordered’ points are colored according to the ←↩

number
of iterations it lasted, until the program recognized, that the point is ’ordered ←↩

’.
All these points belong to the outside of the julia-/mandelbrotset. If a point
after the adjusted number of iterations isn’t of an ’ordered type’, then it is ←↩

considered to be of ’chaotic type’
and drawn as if it belongs to the julia-/mandelbrotset.

Passes

ChaosPro 39 / 115

- With this you can set the number of draw-passes. Due to the condition of the ←↩
julia-/mandelbrotset

one can draw a conclusion out of same iterationvalues at the corner of a rectangle ←↩
.

Because there are ’bands’ of same iterationvalues, the whole inner of the ←↩
rectangle most probably

is of the same iterationvalue. Well, this conclusion isn’t always correct, it’s of ←↩
course

totally wrong for ’dusty’ juliasets, but it helps to decrease the calculation time ←↩
.

And anyway, if you have a ’dusty’ juliaset, you don’t see the dust even if you ←↩
choose ’1-Pass’

which means that no conclusions are made, every pixel is calculated.
This is because it’s totally improbable that out of the limited number of points ←↩

which are
drawn even one single point falls into the dusty juliaset. They fall almost always ←↩

a very very little
beneath the juliaset and so the points are considered to be of ’ordered type’ and ←↩

don’t belong to the
julia-/mandelbrotset. To avoid this, other calculation methods would have to be ←↩

implemented, the
distance-method with continuous potential as example, which calculates the ←↩

distance of every point from
the juliaset (yes, this is possible).

Ausschnitt
- The juliaset shows what happens with the points of the complex plane, if you ←↩

apply
the formula in an iterativ manner to every point of the plane. Here you can choose ←↩

the
area out of the complex plane.

- If you draw the mandelbrotset, this defines the area out of the complex plane ←↩
which is

to be used for the parametervalue ’c’ of the formula.

Eliminate
If this gadget has a checkmark, then the program searches after every drawing pass ←↩

for areas,
whose corners have all the same iteration value. If it finds such areas, it ←↩

assumes, that all
points inside this area are of the same value and doesn’t calculate them. This ←↩

saves quite a
bit time (about 30% on average). Of course this asumption about the inner values ←↩

of areas isn’t
totally correct, but you normally won’t notice it.

Angle
The 2D-fractal is rotated according to this value. This is interesting especially ←↩

in conjunction
with the animation system. There exist 2 gadgets to control the rotation angle. ←↩

The range
goes from -30000 to 30000 (degrees...).
Starting with V3.0 you can change the rotation point. In V2.0 the fractal always ←↩

was rotated
around the middle of the window. Now you can change it, which can produce nice ←↩

effects, if

ChaosPro 40 / 115

you calculate an animation.

A little theory to:
2.3.2.1 Theory: Juliasets
2.3.2.2 Theory: Mandelbrotsets

1.24 2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets

2.3.2.4 Parameterwindow 2

Outside coloring
- several possibilities are offered:
1. Color
With this the whole outside area is drawn with the below setted color. Because the ←↩

outside area
normally is responsible for the nice appearance of the fractal, the sense of this ←↩

choose
is’t clear at the first glance. But with this one can better display the dusty ←↩

appearance
of the juliaset, if it’s possible. Now the many colors don’t disturb.

2. Iteration
Now every pixel of ’ordered type’, i.e. which is attracted by an attractor, is ←↩

colored
according to the number of iterations is lasted until it was clear that it is ←↩

attracted.

3. CPM - an Acronym for Continous Potential Method
Whoever had a look at the second point, recognized that obviously only an integral ←↩

number
can be attached to every point. That’s especially bad while calculating 3D views ←↩

of fractals
because here ’stairs’ appear in the view. The picture looks like a terraced ←↩

landscape.
The heights jump from one value to another. This changes, if you choose this ←↩

method.
By means of a fairly simple function the outside area of a julia- or mandelbrotset ←↩

can be
transformed to the inside area of a circle with radius 1. The fascinating thing is ←↩

now that
the boundaries of the coloured bands, these extremely complicated curves, are ←↩

transformed in
concentric circles with the middlepoint 0. These circles now have a radius of ←↩

course and
now you can replace the iteration values with these radiuses. Another big ←↩

advantage
is that a point which lies in the middle of a single coloured band is transformed ←↩

into the
circle between the two concentric circles defined by the boundaries of the ←↩

neighboured
iteration-bands. If you now define a circle with the middlepoint 0 which contains ←↩

the one point
and revert the function, you’ll obtain a new boundary of a band with a very ←↩

complicated structure

ChaosPro 41 / 115

but which lies perfectly between the boundaries of the old bands!
This method now is used to attach a real (not integral) value to every point so ←↩

that
this terraced effect in the 3D-view is avoided. With ’Mult.’ you now can determine ←↩

, with what number
this real number is multiplicated. The program remembers no real numbers, but only ←↩

integral numbers, because
these don’t need so much memory. So it stores integral numbers, the old real ←↩

numbers multiplicated with ’Mult’.
This means now that a value of 100 for ’Mult’ allows the program to calculate 100 ←↩

values between
two iterations. This is really enough for avoiding the terraced effect. If you ←↩

then save
it as a 24-bit fractal, the 100 additional values between two iterations are used ←↩

to
calculate additional colours between 2 bands.

4. DEM - an acronym for Distance Estimator Method
This algorithm basically is an enhancement of CPM. This method calculates for ←↩

every point an estimation
for the distance from the point to the border of the J-set or M-set. Of course ←↩

this is a real number, not an integer,
so this mode is great for saving in 24 bit and transforming the whole fractal into
3D.

5. DEM Border
This is just the same as DEM, but the ’Bailin’-value is used in a strange way. ←↩

Sometimes one wishes to just draw the
edge/border of the M-set or the J-set. That means, one just wants to calculate all ←↩

points,
which have a distance of less than ’l’ to the edge of the fractal . And this ’l’ ←↩

you
can specify with ’Bailin’.

Annotation: In former times (ChaosProV1.0) it was a big problem to transform some ←↩
Mandelbrot- or

Juliasets into 3D, so they look good. One choosed CPM, but many sudden jumps ←↩
occured, so

the whole fractal was totally screwed up. DEM now is better in many of these cases ←↩
. 2 points, which are tight

to each other, could get very different values, if you use CPM, but if you use DEM ←↩
, they get

similar values. So if you weren’t able to find values, so that the 3D- ←↩
transformation of a fractal

looks good, then try DEM.

Inside coloring
- Now there are 6 possibilities:
Color - Infimum - Infimumsindex - Supremum - Supremumsindex - Magnitude of
z
The inside area normally is one-coloured. But this can be avoided. There are some
methods for assigning colours to points of the inside-area.
Let be (z, z1, z2, z3, z4, ..., zn) the way of a point z, where n is the maximum ←↩

of
iterations.

Infimum

ChaosPro 42 / 115

Here the infimum (well, it’s of course the minimum, it should be the infimum) of a ←↩
point is calculated,

i.e. the minimum of |z1-z|, |z2-z|, |z3-z|, ..., |zn-z|. The minimum is ←↩
multiplicated with

’Multiplicator’ and stored as an integral number.

Infimumsindex
Here the index of the infimum is calculated, i.e. the number of iterations, when ←↩

the infimum (minimum)
appeared. If the minimum of |z1-z|, |z2-z|, |z3-z|, ..., |zn-z| is equal to |z3-z ←↩

|, then the
index is 3.

Supremum
Here now the supremum (in reality it’s the maximum) of a point from the start- ←↩

value is
calculated, i.e. the maximum of |z1-z|, |z2-z|, |z3-z|, ..., |zn-z|. The result is ←↩

then multiplicated
with ’Multiplicator’ and stored as an integral number.

Supremumsindex
Here the index of the supremum is calculated, i.e. the number of iterations, when ←↩

the supremum (maximum)
appeared.

Magnitude of z
After the maximum of iterations the absolut value of z is calculated, ←↩

multiplicated with
’Multiplicator’ and stored.

I was inspired to implement these methods by the book ’The Beauty of Fractals’, ←↩
page 62,

and of course by FractInt from the IBM-PC-Clones

Abort conditions
Here you can define, what kinds of attractors should be able to stop the iteration
sequence.

1. infinite
If checked, every point is examined, whether it is attracted by the infinite
point.

2. finite
If checked, every point is examined, whether it is attracted by a single finite
point.

3. cyclus search
If checked, every point is examined, whether it is attracted by a cyclus (a set of ←↩

points,
may be one single point). For this to work, you have to define the field ’Start’. ←↩

There
you set the iteration-value, from when the search starts. It should be about the ←↩

half of the
maximum number of iterations defined in the parameterwindow 1. This is needed, ←↩

because a point
goes round relativ randomly on its way until it decides to be attracted by a ←↩

cyclus.

ChaosPro 43 / 115

So you should give a chance to the point to take a decision.

4. Formula defined
If choosed, then in every iteration cycle the abort condition, which is specified ←↩

inside the formula,
is checked, too. Of course, this only works with user defined formulae and not ←↩

with
the built in formulae.

Bailout
If every point is examined, whether it is attracted by the infinite point, then ←↩

the question is,
how to determine, whether a point is attracted by the infinite. The following ←↩

method
is applied almost everywhere (for exceptions see {"Biomorphy" LINK ExpertJM_Bio})
You define a circle with the middlepoint 0 and the radius ’Bailout’. If a point in ←↩

its way falls outside this circle,
then its considered to be attracted by the infinite.

Bailin
If every point is examined, whether it is attracted by a finite point or a cyclus,
then the program defines a circle round this finite point with the radius ’Bailin ←↩

’.
If a point falls on its way inside this circle, then the point is considered to be ←↩

attracted by
the corresponsing point.

Theory:
2.3.2.1 Theory: Juliasets
2.3.2.2 Theory: Mandelbrotsets

1.25 2.3 Fraktale --- 2.3.2 Julia- und Mandelbrotmengen

2.3.2.5 Parameterwindow 3

Circle inversion
- This is a geometrical transformation. It throws all outside the circle defined ←↩

by
’Middlepoint’ and ’Radius’ inside the circle and vice versa.

Biomorphy
- Normally Bailout and Bailin define circles.
Whenever points fall outside or inside the circles, the iteration sequence is ←↩

stopped.
But why should one define circles? Somebody experimented and defined rectangles ←↩

and other
areas and tested accordingly. The results are fractals which look a bit like a ←↩

microorganism.
That’s why its called ’biomorphy’.
The exact abort conditions (the areas) are defined like follows:
(x is the real part of z, y the imaginary part)

for bailout:
abs(x)+d*abs(y)>Bailout
and/or

ChaosPro 44 / 115

d*abs(x)+abs(y)>Bailout

for bailin:
abs(x)+d*abs(y)<Bailin
and/or
d*abs(x)+abs(y)<Bailin

Whether to connect these two inequations with ’and’ or ’or’, you can define by the ←↩
cycle-gadget. In the program the variable

’d’ is called ’Biomorphyvariable’.

If you set d=0, then:
abs(x)<Bailin
and/or
abs(y)<Bailin

In the case of ’and’ a rectangle, in the case of ’or’ a cross.

Decomposition
- Now the outside area is subdivided in fields of angles. You define the number of ←↩

fields
by the value in ’Coding’. Every end-value of a point (i.e. after the maximum ←↩

number of iterations)
is examined, in what field it lies and coloured accordingly.

Virtual fractal calculation
Starting with V2.0 ChaosPro has the ability to calculate fractals in a virtual ←↩

mode.
This means, it’s possible to calculate huge fractals without the need for dozends ←↩

of megabytes
of RAM. For example, up to now it was impossible for me, to calculate a 3D-fractal ←↩

of size 1024x768 in 24 bit, because I don’t
have enough memory for the required buffer.
To calculate a fractal in virtual mode, you have to specify the width, the height, ←↩

the depth in planes, and whether a 3D-transformation
has to be performed after calculating the fractal. If you have specified these ←↩

values, you have
to choose the menuitem ’Fractal/Start virtual’. ChaosPro will then start the ←↩

calculation process. The buffer now
will not be created in RAM, but on your storage device. A file will be created on ←↩

this device.
Default directory is ’ChaosPro:’, but this can be altered with the tooltype ’ ←↩

Virtual=<Dir>’.
As soon as the fractal is finished a filerequester appears, asking you for the ←↩

name of the IFF-ILBM-file to store
the big fractal in it.
This virtual calculation is useful especially in conjunction with the printer tool ←↩

’Studio’,
which allows you to print huge fractals, which really look excellent. Normally a
fractal of common size will somehow consist of many little squares, which doesn’t ←↩

look
very good. Now you can print posters...

Theory:
2.3.2.1 Theory: Juliasets
2.3.2.2 Theory: Mandelbrotsets

ChaosPro 45 / 115

1.26 2.3 Fraktale --- 2.3.2 Julia- und Mandelbrotmengen

2.3.2.6 The Datawindow

With this window the most important data of the julia-/mandelbrotset can be ←↩
examined.

The window takes the mouse-position and calculates the exact values at the ←↩
corresponding place.

- The field ’cause’ shows, why the calculation ended.
- The field ’iterations’ shows, when this was the case.
- The field ’distance’ shows, how far away the point is from the edge of the set
.
- ’Point’ and ’Start’ contain the same values in conjunction with juliasets. In ←↩

the field ’Point’
the complex number at the mouse-position (Pixel x and Pixel y) is shown. In the ←↩

field ’Start’
the initialization value of z is shown. In conjunction with Juliasets this of ←↩

course is the same as
in ’Point’. But in the case of mandelbrotsets this is the critical value, which ←↩

can depend on a formula, which must
first be evaluated, like with formula 2 (’m/(2m-2)’).
- Infimum and Supremum
Here the minimum and the maximum of the distance of the orbit of the point to the
origin is shown. Additionally the index is shown, that means, in what iteration ←↩

cycle this
happened. For a deeper understanding of what I’m talking about let me refer to the ←↩

coloring modes for the inside area Infimum/ Supremum/ Inf.index/
Sup.index.

Theory:
2.3.2.1 Theory: Juliasets
2.3.2.2 Theory: Mandelbrotsets

1.27 2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets

2.3.2.7 The Formula window

ChaosPro has a relatively good editor for creating user defined formula. These ←↩
formulas you can use in conjunction

with Julia- /Mandelbrotsets.

This window lets you specify the formula to use for the Julia- or the ←↩
Mandelbrotset. Please notice, that

all the different coloring modes like CPM and DEM are only available for the first ←↩
formula in the listview. These modes can’t be

selected, if you use another formula.

1.28 2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets

2.3.2.8 Colormapping Window

ChaosPro 46 / 115

This window lets you have good control over how the colors are distributed over ←↩
the various iteration

values. ChaosPro uses builtin functions, which are applied to the iteration values ←↩
. The result

then determines the color.

In order to determine the function there exist the gadgets Type, Factor, Max and
Min.

’Min’ determines the minimal iteration value. If a point has a value less than ’ ←↩
Min’, then in all cases

it gets the color 4.
’Max’ and ’Factor’ have an effect on each other. The whole range starting from ’ ←↩

Min’
upto ’Max’ is assigned the whole palette, i.e. if there are just the iteration ←↩

values
from ’Min’ to ’Max’ in ascending order, then there will appear the palette itself.
If you change ’Max’, then ’Factor’ will be adjusted automatically and vice versa.
’Factor’ is the value, which the program directly uses, whereas ’Max’ is more ←↩

intuitiv for
the user.

Well, let ’ItValue’ be the value, which the program has calculated at a specific
position (iteration value), NumCol is the number of available colors for drawing ←↩

the fractal,
i.e. on a 8 bit display 256-4=252 (the first 4 colors aren’t used...).

The following functions are available:
Linear
The function looks like this:
Color = (ItValue-Min) * Factor/100 Modulo NumCol + 4

This function is the most primitive (and worst) function. Normally it is used by ←↩
almost every

other fractal program, because it’s so easy...

Sin
Color=abs(sin((ItValue-Min) * Factor/10000)) * (NumCol-1) + 4
This function creates some interesting effects when you switch on the colorcycling
mode. Due to the constant walk through the whole palette back and forth this ←↩

function is
good for most of the fractals.

0.75
Color=((ItValue-Min) * Factor/100) ^ 0.75 Modulo NumCol + 4

Log
Color=log((ItValue-Min) *Factor/100+1) * NumCol/6 Modulo NumCol + 4
Good, if you have zoomed in many times and there appear too much too different
values...

ArcTan{ub}
Color=abs(arctan((ItValue-Min) * Factor/10000)) * 2/PI * (NumCol-1) + 4
Quite good, because in every case higher iteration values will result in equal or ←↩

higher
color values. The palette is used only once, so this function is very good for
deep zooms.

ChaosPro 47 / 115

Sqrt
Color=sqrt((ItValue-Min) *Factor/100) * Factor/20 Modulo NumCol + 4

In order to get a good impression of how the function with the parameters looks ←↩
like, there exists

a graphical representation of the function.

If you click onto the gadget ’Suggest’, then the program searches the whole buffer ←↩
(if available) and

sets ’Min’ and ’Max’ to the minimal and maximal values appearing in the buffer, ←↩
thus

forcing, that the palette will be used only once.

1.29 2.3 Fractals --- 2.3.3 Bifurcationdiagrams

2.3.3 Bifurcationsdiagrams

2.3.3.1 Theory

I’m explaining the theory on the Verhulst-Model f(x)=a*x*(1-x)

This model can be interpreted as follows:
Let x be the population of a race, e.g. of hares. It’s normalized, so that x s ←↩

from the range 0 to 1.
0 means, there is no hare, 1 means, the whole natur is full of hares, no more ←↩

hares are
in any way possible. Then let a be the growth rate of the population. a=1 would ←↩

mean that
the population of the hares doesn’t grow. So only the factor (1-x) is to explain.
It’s a measure for the free place in the nature, which remains to the hares and it ←↩

can be interpreted as
the available amount of food, which lies again between 0 and 1.
From one year to the next the population now is calculated by simply applying the ←↩

function f(x)
to the population x.
Now lets have a look at this model:
Let a be equal to 2 (this is a really reasonable value):
If in one year the population is little, then there’s much food available, so the ←↩

population will grow.
If the population is big, then there’s less food left, so the hares die by ←↩

starvation.
The question now is: What balance of the population will be the result in many
years?

Let be x0=0.1, a=2, then in the following years the population is:
x1=2*0.1*0.9=0.18
x2=2*0.18*0.82=0.2952
x3=2*0.2952*0.7048=0.416
x4=2*0.416*0.584=0.486
x5=2*0.486*0.514=0.50
...
Here the balance is reached quickly at 0.5 and this is the result, that means, the ←↩

population of the hares
would be grow upto 0.5 and then constantly be at this value.

ChaosPro 48 / 115

But what happens if you alter the growth rate? The question is, what balance is ←↩
reached, anyway, is a balance reached?

This model is a very simple one, but there are many surprising effects already in
it.
1. case: 0<a<=1

In this case x converges to 0, and this is clear, because a is our growth rate, so
the hares don’t have enough children, they’ll die.

2. case: 1<a<=2

Here now the population reaches quickly a balance situation, the population is ←↩
growing or shrinking in a monoton

way to the balance, depending on the startvalue of x.

3. case: 2<a<=3

Here also there’s a balance, but the successive values of x converges in an ←↩
oscillating way

to the balance-point and not in a monoton way.

Now let a be grater than 3 z.B. a=3.1
x1=0.3
x2=0.651
x3=0.704
x4=0.646
x5=...

If you calculate further, then you’ll recognize, that x oscillates between two ←↩
values,

0.557 and 0.764. So here we don’t have a balance, the population of our hares is ←↩
springing

from one year to another between the two values.

If you then take a grater a, but less than 3.449489, then always the population ←↩
oscillates

between 2 values. But then something happens again: a period-doubling, that means, ←↩
a oscillates

between 4 (!) values. At a=3.5441 this 4-cyclus changes to an 8-cyclus. All these
values, at which the cyclus lenght doubles, are called bifurcationnodes.
This 8-cyclus mutates to a 16-cyclus, then to a 32-cyclus, etc., upto a specific ←↩

value:
a=3.569946
From this value upto a=4 there it happens:
The whole thing gets chaotic, that means x oscillates randomly between any values,
here now the attractor isn’t a cyclus with a fixed length, but a one dimensional
fractal. In this area upto 4 there are a few ’windows’, e.g. at a=3.83, where
a cyclus with the lenght 3 dominates, which mutates to a 6-cyclus, then to a 12- ←↩

cyclus, a 24-cyclus, etc.
Windows like this are all over this area upto 4.

If you now look again at this model and remember, how we have started, then you ←↩
surely

are surprised, what strange things can happen in such a simple model. At the first ←↩
glance

ChaosPro 49 / 115

you surely had thought, that there simply have to be any balance...

1.30 2.3 Fraktale --- 2.3.3 Bifurkationsdiagramme

2.3.3.2 Parameterwindow 1

Formel
- In the previous chapter the Verhulst-formula was examined. But other formulas ←↩

may also be used.
In this program 5 of the more important formulas were built it. You can draw the ←↩

bifurcation-diagram of these.

Iteration
- In order to draw the bifurcation diagram correctly, the initial value has to be
iterated sufficiently often to give it a chance to be attracted by a probably ←↩

existing attractor.
Only after this the program can draw the diagram correctly. In case of the ←↩

bifurcation diagram the initial value is iterated half of the value, which is ←↩
here

defined. Then the initial value hopefully has reached its attracting cyclus. Then
the point is iterated further, until the value in this field is reached, but now ←↩

the various results are drawn.
If you want to draw the diagram more exactly (perhaps if you have zoomed into a ←↩

bifurcation), then
you’ll recognize, that it’s not a sudden occurring bifurcation, but a wide band of ←↩

various points.
This isn’t correct. It’s the program, which isn’t exact enough. There are really ←↩

suddenly occurring bifurcations.
In this case you should increase the iteration-value, the program then is more ←↩

exact while calculating. And then
there are again real bifurcations (until you don’t zoom in further ...)

Variable x/Variable y/both
- This option is only available with formula 3. There you have the formulas
x=a*x*(1-x-y) and y=a*x*y, so there are 2 variables, perhaps the foxes and the ←↩

hares (and the growthrate)
Which variable the program should draw, you determine with that.

a: Minimum - Maximum
- In the fractalwindow horizontally the parameter a is drawn. Here you define the ←↩

minimum and the maximum value of a (the growthrate).

x/y: Minimum - Maximum
- In the fractalwindow vertically the variable x - in conjunction with formula 3 ←↩

also y -
is drawn. Again here you define the minimum and the maximum.

Theory:
Chapter 2.3.3.1

1.31 2.3 Fractals --- 2.3.3 Bifurcationdiagrams

ChaosPro 50 / 115

2.3.3.3 Datawindow

- In the fields a and x/y the values corresponding to the actual mouse position ←↩
are shown.

In the fields x and y and in the fields End x and End y the start values (←↩
initialization values) and the results (endvalues)

after the here below defined number of iterations are shown.

- In the gadget cyclus the lenght of a eventually found cyclus is shown.

- Through the field ’Show iteration’ in conjunction with the slider is defined, ←↩
after how many

iterations the values of x and y are transferred into the two fields ’End x’ and ’ ←↩
End y’. This enables examining

the various values of x (and y) without using the calculator.

Hint:
Though pressing the key ’I’ or ’Shift+I’ this value can be changed from the ←↩

fractalwindow.
So it’s not necessary to activate the datawindow.

Theory:
Chapter 2.3.3.1

1.32 2.3 Fractals --- 2.3.4 Dynamic Systems

2.3.4 Dynamic Systems

2.3.4.1 Theory

In the year 1961 the moteorologist Edward Lorenz examined a system of a few
differential equations, a system, of which not the concret points are known, from ←↩

which one can calculate another, but the
derivation of every point, so that an approximation of the next point can be ←↩

calculated.
Well, he made his experiments and found out, that his result depends very strongly ←↩

on
the used numerical precision. A very small error at the beginning caused a totally ←↩

different
result. So the title of one of his publications was: "Kann das Flattern eines ←↩

Schmetterlings
in Brasilien einen Orkan in Texas verursachen?" (Can the fluttering of a butterfly
in Brasil cause a hurricane in Texas?"). The answer was yes. So this by Lorenz ←↩

discovered effect
is called "Schmetterlingseffekt" (in english perhaps "effect of a bufferfly"). ←↩

Edward Lorenz then
simplified his model and experimented with it. It contained only 3 differential
equations:

dx/dt=-ax+ay
dy/dt=cx-y-xz
dz/dt=-bz+xy

They are read like follows:

ChaosPro 51 / 115

The derivation in x-direction to the time is -ax+ay
The derivation in y-direction to the time is cx-y-xz
The derivation in z-direction to the time is -bz+xy

Lorenz gave a the value 10, b the value 8/3 and experimented with different values
of c. The resulting object can be interpreted as a 3-dimensional curve and, if an ←↩

initial point is given, it’s from a mathmatical point
of view (theoretically) definite, but not in practice.

Lorenz took the value 28 for c and calculated the curve for various initial points ←↩
.

But although the curve started totally different, he found, that after a few ←↩
seconds always

the same figure appeared. It had a very complicated structure, it was built from ←↩
an infinite number

of loops, and the whole thing was very strange... It looked like the 3 ←↩
differential equations

"stamped" a very complicated structure into the 3-dimensional world in his ←↩
computer, a fractal attractor,

which attracts every point in this world. Because the structure was so complicated ←↩
, such an attractor

is called "strange attractor".

Well, some of the numericans call all these effects as totally feeble-mindedness, ←↩
because

it’s all caused by rounding-errors from the computer, so the whole story exists ←↩
only

in the computer and has no practical meaning. But I don’t think this is totally ←↩
correct.

Often the real nature itself only calculates with integer-values. That means, ←↩
often the object of interest

isn’t infinitely often dividable, often there exists a ’smallest’ object like a ←↩
quark etc. That means now, that

also in the nature there must occur rounding-errors. And so the computers are ←↩
perfect imitators of the nature, at least qualitatively, not

quantitatively, because the number of integer-numbers in the nature is a bit ←↩
greater than the

corresponding in the computer world.

1.33 2.3 Fractals --- 2.3.4 Dynamic Systems

2.3.4.2 Parameterwindow 1

Area
- Because the Lorenz/Roessler-attractor is threedimensional, it’s a little problem ←↩

to define the
drawarea. In this program this is solved like follows: You define the values as if ←↩

you are looking
at the attractor from the front. So you define the drawarea.

Viewangles
- In order to not only view the attractor from the front, but from any point in ←↩

the room, you can
change the viewangles. The system, which is here used, corresponds to the system ←↩

of the earth: a degree of latitude and

ChaosPro 52 / 115

a degree of longitude. With alpha you define the degree of longitude, with beta ←↩
the degree of

latitude.

Parameter
- Here you can set the 3 parameter used in conjunction with the dynamic systems.
I recommend to change the values only slightly, because the systems react heavily ←↩

to little
changes.

Systemtype
- At this time the program offers 2 types out of the class of the continual ←↩

dynamic systems,
the Lorenzattractor and the Roesslerattractor. The Lorenzattractor is defined by
the following 3 differential equations:

dx/dt=-ax+ay
dy/dt=cx-y-xz
dz/dt=-bz+xy

The Roessler-attractor by these:

dx/dt=-y-z
dy/dt=x+ay
dz/dt=b+xz-cz

Theory:
Chapter 2.3.4.1

1.34 2.3 Fractals --- 2.3.4 Dynamic Systems

2.3.4.3 Parameterwindow 2

Startpoint
- In the theoretical chapter there was mentioned, that independently from the ←↩

startpoint the way
of the point is always attracted by an object, which is called "strange attractor" ←↩

due to its complicated structure.
Everybody, who doesn’t believe this, has now the possibility to check this out and ←↩

to change the startpoint.

Time settings
- With ’Time’ the duration is defined, how long the point is drawed. The ←↩

differential equations system
describes the change of the way in dependence of the time. But because the ←↩

computer can’t do anything with
a derivation, it must replace this ’dx/dt’, with is equivalent to the limes of ←↩

delta x divided trough delta t
for t to null, by delta x divided trough delta t with an adequately small delta t. ←↩

This is what you
can also choose.

Drawing speed
- The Lorenz- and the Roesslerattractor can be drawn really quick. That’s nice of ←↩

course. But

ChaosPro 53 / 115

to examine the structure, to see, how it’s made, it’s much too quick. So if you ←↩
want to see the

attractor being built, then you must slow down the drawing speed. With this slider ←↩
you

can set the speed from 1 (slow) upto 100 (as fast as possible).

Drawmode
- There are 3 possibilities offered:
draw as points/draw as Lines/aggregated points

The first two modes draw the attractor just draw the whole attractor starting at ←↩
time 0 upto the defined

time. The first mode draws only the single points, which makes it look more ←↩
clearly, the second mode

draws a line between the last point and the new one.
The third mode is a little more specific:
In the theoretical chapter there was mentioned, that little differences at the ←↩

beginning lead to
totally different results (butterfly-effect). This can be visualized with this ←↩

mode.
At the beginning a ’cloud’ of many points, which have almost the same position, is ←↩

shown.
Then every single point of this cloud is erased, its new position calculated, and ←↩

drawed again.
After a little while you see, that the cloud, which appeared as a single point, ←↩

divides itself
and the points slowly go their own ways, distributing all over the attractor. This ←↩

visualizes, that
a mathematical forecast of the position of a single point after a while isn’t ←↩

possible, because
in practice the exact position at the beginning can’t be determined (there are ←↩

always rounding-errors).
Every little inaccuracy at the beginning has after a while an unforeseeable effect ←↩

. The only thing, one can say, is,
that the point is somewhere on the attractor.
- With the gadget ’distance’ you can define the average distance from one point to ←↩

another at the beginning, so it defines
the radius of the ’cloud’. The closer the points, the longer it takes, until the ←↩

butterfly-effect takes
place.
- With the gadget ’Points’ the number of points in the cloud is defined. This ←↩

value is determined
mainly by the power of your computer and the gfxboard you have installed, because
many WritePixel take place...
- This mode makes most fun, if the cloud consists of many points. But this needs ←↩

much power, perhaps something like
a 200-Mhz-68060. To avoid this, I’ve added a gadget, which enables a mode, in that ←↩

the program
draws directly into the bitplanes. This is much faster than a WritePixel, but ←↩

gfxboards can’t handle it.
This mode overdraws all, whatever is put over the window, as example another ←↩

window or the activated menu.
So pay attention. If you enable this mode, then make sure, that the window is ←↩

totally visible.

Theory:

ChaosPro 54 / 115

Chapter 2.3.4.1

1.35 2.3 Fractals --- 2.3.5 Plasma

2.3.5 Plasma

2.3.5.1 Theory

Plasma is nothing other than a 2-dimensional Brownian motion. A 1-dimensional ←↩
Brownian

motion can be made like following: Guess you have a point (as the base), then you
take a random number. Take care, the random number generator must have N(0;1) ←↩

normal
distribution. Then you horizontally go a step from your point to the right and ←↩

according
to the random number up or down, dependent on the sign of the number. Now you ←↩

obtain
a new point, and you are able to repeat the last steps, i.e. a new random number, ←↩

make
a step to right and up/down, etc... The result is something like a cut through a
mountain, a zigzag-motion once up and once down.
There are several other algorithms for creating a Brownian motion. One other I ←↩

want to mention, because the
2-dimensional variant of it I use in the program:
Guess you have two points and you want to create a Brownian motion between the two ←↩

.
Then you take the two points, draw a (virtual) line between them and mark the ←↩

midpoint
of the line between the two points. Then you take a random number, multiply it ←↩

with
a value, dependent on the dimension you want and dependent on the length of the ←↩

interval
of the two points. Then you displace the midpoint according to the number you got.
You obtain 3 points and two (virtual) lines, and with them you act accordingly. ←↩

This
algorithm can easily be expanded to create a 2-dimensional Brownian motion. Guess ←↩

you
have 4 points, which form a rectangle. You take the midpoint, take a random number ←↩

and
displace it according to the random number. Then you displace the 4 other points
in the middle of each line between 2 corners. You obtain again 4 rectangles and
you can act accordingly...
It’s this last algorithm, which is use in my program.

1.36 2.3 Fractals --- 2.3.5 Plasma

2.3.5.2 Parameterwindow 1

Sigma
- A random number is needed at every midpoint-displacement. This number is ←↩

multiplied
with another number, which depends on the dimension and on the length of the ←↩

interval.

ChaosPro 55 / 115

This number is the base of this multiplicator, i.e. at the first midpoint- ←↩
displacement

the random number is multiplied with this number, the successing midpoints of the
smaller rectangles are multiplied with parts of this number. The exact ’parts’ ←↩

depend
on the wished dimension.

H
- This number determines directly the dimension of the object. The resulting ←↩

dimension
is 3-H, i.e. if H=0.9, then the dimension is 3-0.9=2.1, so it’s a rough area. If
H=0.1, then the dimension is 2.9, so it’s a very rough area, which is locally ←↩

almost
a space. This object you could imagine as a mountain with very much and very steep
zigzags, almost space-filling...

ColorMult
- The resulting value is multiplied with this number, the result is interpreted
as the colorindex. This parameter has a similar effect like ’Sigma’, but it doesn’ ←↩

t
affect the values in the buffer, it only effects another interpretation of the ←↩

values
in it. So the Plasmafractal doesn’t need to be calculated again, it only needs to
be interpreted once again according to the new values. So this saves lots of time,
the fractal just needs to be drawn again...

Seed
- Because this type works with random numbers and a seed of random numbers is ←↩

deterministic, if
calculated by the computer, it’s necessary, to define a startvalue of the seed. ←↩

The same value results
in the same random-number-seed.

Theory:
Chapter 2.3.5.1

1.37 2.3 Fractals --- 2.3.6 Lyapunov-Space

2.3.6 Lyapunov-Space

2.3.6.1 Theory

The Lyapunov-Space is similar to the bifurcation diagrams. There a formula was ←↩
used, which

describes the development of the population. In dependence of the growth rate ←↩
there was shown,

whether a balance exists in the population and if there is one, what type of ←↩
balance (the lenght of

the eventually existing cyclus).
The Lyapunov-Space now has 2 growth rates, which alternate with each other in a by ←↩

the user defined
manner.
Look at the sequence AAABB as example, let A be 3 and B be 2 (the two growth rates ←↩

).

ChaosPro 56 / 115

Now this means, that the population of the hares grows in one year with the growth ←↩
rate 3,

in the next year with 3 too, and then in the next year also with the growth rate ←↩
3, (the sequence has

three leading A’s), then suddenly with the growth rate 2, then again with 2, and ←↩
then the sequence starts again

with a growth rate of 3 etc.

Now you examine this model for all different values of A and B. A is drawn ←↩
horizontally and B vertically.

Now we must decide, what we should draw at a concret position. Of course, we draw ←↩
a pixel at this place, but of what color?

With the bifurcation diagrams there were mainly two classes of points:
1. class: Values of the growth rate, which lead to a cyclus of any concret finite
lenght.
2. class: Values of the growth rate, which don’t lead to a balance.

Here we take this classification and color a pixel accordingly. Now the question
remains, how we can decide, whether a concret point (with concret values for A and ←↩

B)
leads to a cyclus or diverges.
Well, let us examine the formula f(x)=a*x*(1-x)
We define, that there is a balance, if the average of the absolut value of the ←↩

derivation of f(x) is less than 1, otherwise there is chaos.
But we must give a chance to the point, to be attracted by a cyclus, like we had ←↩

to do previously with the bufurcation diagrams.
In practice we make the logarithm, so we have the following algorithm:

X=0.5 ; the population start value...
; Now we must give a chance to X, to go to an attractor...

FOR N=1 TO 4000
; R is A or B, dependent on the sequence...

X=R*X*(1-X)
NEXT N

; upto here there should all be clear

Sum=0
FOR N=1 TO 6000

; R is again A or B, dependent on the sequence...
X=R*X*(1-X)

(add the absolut value of f’(x)=R-2*R*X, but take the logarithm of that)
Sum=Sum+Ln|R-2*R*X|

NEXT N
Sum=Sum/6000 ; build the average

Well, the result, contained in the variable ’Sum’, is the average of the Ln|R-2*R* ←↩
X|, the logarithm of

the derivation of the formula f(x) and represents the rate, with which the ←↩
population grows. It is called Lyapunov-exponent.

If the average is negativ (that means, that |R-2*R*x| is average less than 1), ←↩
then

balance takes place, otherwise chaos.
Chaos we color with a single color, mostly black. I’ve tested to color the chaos,
but I’ve found out, that it’s really intelligent, to call is chaos...

ChaosPro 57 / 115

If a value of less than 0 is the result (balance, in practice we get values mainly ←↩
downto -5),

then we multiplicate the number appropriate, cast it to an integer and color the ←↩
pixel

with this number. That’s all...

1.38 2.3 Fractals --- 2.3.6 Lyapunov-Space

2.3.6.2 Parameterwindow 1

Formula
- These formulas are identical to the formulas at the bifurcation diagrams, except ←↩

that formula number 3 is missing, because
there I didn’t know, what to do with the derivation.

ExpMin
- Here you can define the minimal exponent. The colors are automatically adequat ←↩

distributed
to the defined Lyapunov-exponent range. All values, which result in a smaller ←↩

exponent,
are coloured with color 4.

Start x
- Everybody, who looks at the Lyapunov-space, regocnizes these spikes, which cross ←↩

each other.
It’s very strange, that the position of the spikes, I mean, whether spike number 1 ←↩

is behind or in front of spike
number 2, depends on the initial value of x (in the algorithm we had initialized x ←↩

with 0.5).
This initialization you can set with this gadget.

Sequence
- Here you can set the sequence of the two growth rates. In order to actually take ←↩

place,
you have to press the return-key (or help, or tab...).

Passes
- In order to visualize more quickly the Lyapunov-space, one can artifically lower ←↩

the resolution, like it’s made
at the julia- and mandelbrotsets. Everybody, who now is terrified, because he ←↩

thinks, that I take this method
in order to make the calculation faster (like I do with julia/mandel), I can calm:
All I do, is, as a preview lowering the resolution. By choosing 3 passes the ←↩

Lyapunov-space
is actually drawn more slowly as with 1 pass (but you won’t recognize it too much) ←↩

, but
you get more quickly an impression of what it looks like and can zoom in further ←↩

or change a
parameter.

Chaoscolor
- Name says all, or not...?

Stabilization

ChaosPro 58 / 115

- This value defines, how often the formula is first iterated, until the exponent ←↩
is calculated. This gives a chance to the point,

to be attracted by an eventually existing cyclus.

Iteration
- Here you can define, how often the formula after the stabilization has to be ←↩

iterated, in order to calculate the
Lyapunov-exponent. I recommend to first setting this value to a low number (←↩

perhaps 20, because then the space is drawn faster), then to increase it. After ←↩
that, you’ll

see, whether the picture changes a lot...

Area
- This should be clear...
A is drawn horizontally, B vertically

Theory:
Chapter 2.3.6.1

1.39 2.3 Fractals --- 2.3.6 Lyapunov-Space

2.3.6.3 Datawindow

In the datawindow the to the mouseposition corresponding growth rates A and B are ←↩
displayed, and the Lyapunov-exponent is

calculated again.

Theory:
Chapter 2.3.6.1

1.40 2.3 Fractals --- 2.3.7 IFS

2.3.7.1 IFS

Nowadays almost everbody is talking about fractal image compression. This ’new’ ←↩
method promises incredible

packing rates. If one believes the others out in the world, then it should be ←↩
possible to describe

whole images just with a small set of numbers. The basic idea for this pack ←↩
algorithm is an iterated function

system, short IFS. To be exact, Julia- and Mandelbrotsets are also iterated ←↩
function systems, but this chapter doesn’t

care about these special fractals. Here I will only have a short glance at linear ←↩
iterated

function systems.
As it was the case with the Julia- and Mandelbrotsets, here again one is ←↩

interested
in the ’attractor’. You have seen already (at least I hope so), that this ←↩

attractor
can be very complicated, just remember a few pictures of the Mandelbrotset. The ←↩

special thing about the
(linear) IFS is, that one is not only able to calculate the attractor from a given ←↩

IFS. One is also

ChaosPro 59 / 115

able to reconstruct an IFS from an attractor. So you have a picture, assume that ←↩
it is an attractor of an unknown IFS, reconstruct

the IFS, save the IFS (which normally needs only a small set of numbers) and if ←↩
you want to look again at the picture, you just calculate

the attractor of the saved IFS and get a picture, which is similar to your ←↩
original picture.

This is the basic idea behind fractal image compression. One only has to choose ←↩
the right functions, so that the attractor is similar to

the picture on wants to compress. Sounds quite easy, doesn’t it? Well, now, how ←↩
exactly

does it all work?
An IFS consists of several functions, every single function is an affine ←↩

transformation, that means,
a function, which just rotates, moves around or streches a given object. Every ←↩

such affine transformation
has a value assigned, which is interpreted as the execution probability, that ←↩

means, this value determines, how
often this function is applied to a point compared to the other functions in the
system. Such affine transformations can be represented simply by a matrix (←↩

responsible
for rotating and stretching) and a vector (responsible for moving the object ←↩

around)
.
Now, how is a picture, the attractor of an IFS, calculated?
1. One starts with a point, which surely lies onto the attractor. For example, one ←↩

can take the fixed point of
the first transformation.
2. Choose a function of the IFS, such that the given probabilities are fulfilled
.
3. Apply the chosen transformation to the last point. The result is a new point of ←↩

the
attractor. Go to step 2...

Well, after some time the attractor will appear.

Now lets come to the question, why and especially how it is possible, to construct ←↩
an IFS to a given picture.

There exists a mathematical proposition, called the ’Collage Theorem’, which ←↩
essentially says, that this

construction is possible.

Given an IFS with the transformations w1 to wn, additionally a set T. Let s be the
greatest Lipschitz-constant of all the transformations w1 to wn, which must be ←↩

smaller
than 1. Well, s should be, in my own words, the maximal factor of all the ←↩

contractions.
Every transformation is some sort of rotation, stretching and movement. Rotation ←↩

and movement doesn’t
affect the distances of the object, just the stretching affects the distances of ←↩

the object.
So s should be the maximal stretching factor of all transformations. Now in this ←↩

case this is the
Lipschitz-constant. And it has to be smaller than 1.
Now let me continue with the theorem:
The Hausdorff-distance between T and the union of w1(T) to wn(T) should be smaller ←↩

than
a given epsilon. Then the Hausdorff-distance between the attractor of the IFS and

ChaosPro 60 / 115

T is smaller than epsilon/(1-s).
Well, the Hausdorff-distance of 2 sets is, to be quite inexact, and, to be precise ←↩

, wrong,
but easier to understand, the ’normal’ distance between 2 sets.

Well, now let me explain, what this theorem essentially says:

Given a set T, this could be perhaps a picture (should be a black-white-picture
...)
Then the transformations of the IFS, w1 to wn, are chosen, so that the union
of the sets w1(T) to wn(T) covers quite exactly the whole set T, that means, the ←↩

union of the sets, which arise, if you separately apply
w1, w2, ..., wn to the set T, covers the picture. Remember, the transformations ←↩

are functions, which just rotate, stretch and move an object around.
So all this last sentence says, is, that the functions w1 to wn should be chosen, ←↩

such that the whole picture T
is built of small copies of itself, just like a collage...w1(T) is a rotated, ←↩

stretched (with
a factor smaller than 1!) and displaced copy of the original set/picture T, so is ←↩

w2(T),
w3(T),...wn(T).
Well, then the condition of the theorem is approximately fulfilled, i.e. the ←↩

Hausdorff-distance
between T and the union of w1(T) to wn(T) is smaller than epsilon. This epsilon of ←↩

course is determined
by the quality of the collage. Then the theorem says:
The attractor of the IFS, which one can calculate out of the transformations, is
similar to the original set/picture T. To be more exact, the Hausdorff-distance ←↩

between this attractor
and T is smaller than epsilon/(1-s). Now you see, why the Lipschitz-constant must ←↩

be smaller than 1.
And you can see even more: If you have a very small Lipschitz-constant, then (1-s) ←↩

is near 1, but then of course you need many transformations to
cover your picture, because the Lipschitz-constant is the stretch-factor, so you ←↩

have to build the picture T out of many very small copies of it.
So if you want to make a very good collage, then the compression ratio isn’t that ←↩

good.
Also notice, that the calculation time goes up, if ’s’ is small. It makes sense, ←↩

to choose ’s’=0.25, so to build the
whole picture of quarters of itself.
As you can see, too, the number of differences between the attractor and the ←↩

original picture depend on epsilon. So if you make a bad
collage, then this epsilon is big...

Well, this is the idea for fractal image compression. One simply has to find out ←↩
the

transformations w1 to wn.
One could implement the following algorithm:
Given a picture, this picture is then cut out and used as a brush, just as
in any paint program. The user then has to rotate, move around and stretch
this brush, so it covers a part of the original picture. Then the user has
to fix it. the first transformation is completed (one simply has to write down
all done actions like moving, rotating and stretching). Then one fetches
another copy of the original picture, again moves, rotates and stretches it,
so it covers another part of the original picture. It then should be fixed, too,
and so the second transformation is ready. The user continues like this, until the

ChaosPro 61 / 115

original picture has been covered by some smaller copies of itself, just like a ←↩
collage.

Let me note one thing: The parts of the copies may of course overlap, but this ←↩
just increases

the calculation time, so it should be avoided.

Of course I already tried to write such a program. Unfortunately the resulting ←↩
transformations

weren’t good. I don’t know why it didn’t work, it just has to work. Well, perhaps ←↩
in some time

I manage it to write such a program.

1.41 2.3 Fractals --- 2.3.7 IFS

2.3.7.2 IFS-Parameter 1

Most of the parameters should be self-explanatory.
Formula
This listview lets you choose the formula, which one has created using the Formula ←↩

editor
.

Parameter
Right beneath the listview one can choose upto 4 parameters, which eventually are ←↩

used by the
formula.

Iteration
This number determines the number of points of the attractor, which should be ←↩

calculated
.

Colormode
This gadget lets you specify the coloring mode.
There are 3 possibilities:
1. Transformation: The color of the point is determined by the last applied ←↩

transformation
.
2. Probability: Just like in 1: In order to get the transformation, a random ←↩

number has to be calculated. Here this random number defines the number of the ←↩
point. This of course

leads to similar results like in 1.
3. Measure: This is the best mode. The greater the measure at a point, the greater ←↩

the color
register.

Area
Should be clear...

Angle
An IFS is, at least in ChaosPro, always a 3 dimensional IFS. So these gadgets ←↩

exist, which let
you specify the view angle.

ChaosPro 62 / 115

1.42 2.3 Fraktale --- 2.3.8 L-System

2.3.8.1 L-System

Well, the correct name for this fractal should be DOL-system, or, to say it in ←↩
english,

deterministic contextfree Lindenmayer systems. Deterministic, because no random ←↩
plays any

rule in opposite to perhaps IFS, contextfree, because all this stuff is about ←↩
contextfree

grammar (that’s the jargon of the informaticans, it only means, that there are ←↩
rules for

replacing text, which have to be applied regardless the context, i.e. rules of the ←↩
form

’character <c> has to be replaced by the string <string>’ and not of the form (←↩
contextsensitive)

’<string1> has to be replaced by the string <string2>’). Well, I think, this was ←↩
enough stuff about

the name.
What’s all this stuff about?
An L-system consists of an axiom, simply a string and a set of rules, all of which ←↩

have the
form ’character <c> has to be replaced by the string <string>’. Now one starts ←↩

with the axiom as the initial string.
Then the first character is examined. If a rule exists, which says, that this ←↩

character should be replaced
by a string, then it should be replaced by this string. If no rule for this ←↩

character exists, then just leave the character
as it is. Then have a look at the second character, replace it by a string, if a ←↩

rule exists, or simply do nothing, if no
rule exists. Continue this way, until the end of the string is reached. Then the ←↩

first iteration is finished. The result
is most likely a string, which is quite a bit longer that the string before the ←↩

iteration.
Now the second iteration starts with the new string, one starts again at the first ←↩

character, replaces, goes
to the second, the third, etc. until the end is reached, then goes on to the next ←↩

iteration, starts again at the
first character, etc., the 4th iteration, the 5th, etc. until MaxIt is reached. As ←↩

you can imagine,
values of less than 10 for MaxIt are very popular, because the string will grow ←↩

exponentially...
At the end one has a huge string, which doesn’t look like a fractal. But now the ←↩

magic starts:
The whole string is interpreted as a series of drawing commands. A drawing command
consists normally of a single character, like ’F’, which simply draws a line. The ←↩

resulting image is a fractal, at least, if
one would iterate infinitely often.
The Lindenmayer-systems are of importance in conjunction with computer generated ←↩

natural objects, because the results
show some similarities to objects, which appear in nature, mostly plants. ←↩

Unfortunately these deterministic contextfree
systems aren’t that powerful. It’s very difficult to create realistic plants with ←↩

them.
If one wants to create such plants, one has to specify a huge amount of rules to ←↩

describe simple

ChaosPro 63 / 115

plants. Due to this, there exist some enhancements to DOL-systems, which then are ←↩
contextsensitive and

additionally not deterministic.

But not lets give an example of an L-system, just to make clear, you have ←↩
understood the basic

idea:
Well, lets define the Koch-curve: Everybody should know this fractal, additionally ←↩

it’s ideal
for creating via L-systems:

Keep in mind some drawing commands:
F, which draws a line of given lenght into the current direction
+, which changes the current direction, say about 60 degree counter clockwise..
.
-, which changes the current direction, say about 60 degree clockwise...

Lets start with the axiom: F
Now lets define one single rule: F has to be replaced by F-F++F-F

This is exactly the definition of the Koch-curve: Every line (F) has to be ←↩
replaced by an

object, which is the line, but the middle third part of the line is replaced by a ←↩
triangle. Just

draw this F-F++F-F, and you see this replacement. It is obvious, that this very ←↩
simple

L-system creates the Koch-curve.

Generally the whole kind of interpreting the drawing commands is very similar to ←↩
the

turtle-graphics. But who knows nowadays, what turtle graphics is? In former times ←↩
this

kind of drawing was very popular. One has to imagine a virtual turtle on the ←↩
screen,

which can do some actions. It can move forward, draw forward, it can rotate about ←↩
an

angle, it can change the drawing color, etc.

For an explanation of all the drawing commands see the chapter about the L-system ←↩
formula

editor.

1.43 2.3 Fractals --- 2.3.8 L-System

2.3.8.2 LSystem-Parameter 1

The listview lets you choose the L-system formula, formulas can be changed in the
formula editor window for L-systems.

Right beneath the listview there are 4 parameters, which are currently unused. ←↩
Below these gadgets

there is a gadget, which lets you choose the number of iterations to perform.
Normally you should use values between 3 and 15. I recommend to start with about ←↩

3, then to increase it step by step.

ChaosPro 64 / 115

Below the listview you can choose the area. Other programs calculate L-systems in ←↩
another way. They first completely generate the

string, then parse it to get the size of the fractal, and then choose the area ←↩
accordingly. Of course this has be

disadvantage, that the user doesn’t see anything for quite some time, so I don’t ←↩
like

it.

1.44 2.3 Fractals --- 2.3.9 Diffusion

2.3.9.1 Diffusion - Theory

Well, what should I tell you now?
Some effects in nature remind people heavily on fractals, for example lightning. ←↩

Or diffusion effects,
for example, if one mixed oil and water. These two liquids have a very intricate ←↩

bound between each other, which also remind
to lightning. Well, such a diffusion one can simulate by the computer. This is ←↩

done in the following
way:
One starts with an object on the screen, for example a point. Then a new point ←↩

suddenly appears anywhere on the screen.
This new point one moves randomly around, such that it performs a random walk, a ←↩

brownian
motion. To be more exact, one chooses randomly 0, 1, 2 or 3, and then moves the ←↩

point up, if he choosed 0, right, if he choosed 1,
etc.

Of course, this can be continued for some eternaties. So one needs an abort ←↩
criteria. Finally there should

be a diffusion fractal. Well, as soon as the point arrives in the neighbourhood of ←↩
a fixed point, it adheres to it and

so gets fixed. Then a new point is created, same procedure is performed, etc. The ←↩
resulting image

then is some sort of diffusion.

1.45 2.3 Fractals --- 2.3.9 Diffusion

2.3.9.2 Diffusion Parameter 1

Well, what parameters can be chosen?

Type
Here you have 2 possibilities:
1. Diffusion: Calculates a diffusion fractal
2. Random Walk: Just shows a ’Random Walk’, i.e. how a point moves around randomly
.

Shape
You can choose the starting shape of the fixed points. Currently 4 possibilities ←↩

are
available. If the starting shape is a line, then it should be clear, that the ←↩

moving points adhere

ChaosPro 65 / 115

at this line. So the resulting image should like moss, i.e. many lightnings out of ←↩
a

line.
a) Point: Just a point in the middle of the window
b) Line: Just draws a line
c) Rectangle: Draws a rectangle
d) Random: Randomly draws some points

Show Walk
If checked, then the walk of the point is shown, otherwise just the result is ←↩

shown,
i.e. the point, as it gets fixed...

Seed
Determines the initial value for the random number generator.

Colormode and Coloradd
a) Neighbour: The color of a point is the color of the neighbour point +
Coloradd
b) Time: The color of a point is determined by the amount of time, the point moved
around.

Sticking probability
Values between 0 and 1 are legal. This value specifies the probability, with which ←↩

a point, which encounters a fixed point, also stays fixed.
I don’t think, you understood this, did you? Well, upto now you assumed, that a ←↩

point, which moves around and suddenly encounters a fixed point in the
neighbourhood, adheres to this point and stays fixed, too. Well, but this is not a ←↩

must-be. A point needn’t stay fixed, it can move around until it finds
another fixed point. Perhaps then it stays fixed. And this is, what this ’Sticking ←↩

Probability’ means: How probable is it, that
a point, which encounters a fixed point, adheres to it? Now all should be clear
...

Boxsize
It takes much too much time to calculate a real diffusion fractal. So I had to ←↩

speed it up.
The program calculates the smallest square around the set of all fixed points. It ←↩

then calculates a bigger square, which is just
’Boxsize’ pixels bigger (i.e. the side lenght is longer) than this just calculated ←↩

square. And now this
greater square is the region in the window, where all happens: All new points ←↩

appear in this square, and not anywhere in the window. You can imagine,
that this speeds things up quite a bit. And yet another ’hack’ was done: As soon ←↩

as a point leaves this square, it is thrown away, a new
point inside this square is generated. It would take too much time, until the ←↩

point, which has left the square, comes back into the square, so
a new point is calculated. It shouldn’t matter that much, because it’s totally ←↩

random, where this point encounters the square again, so it
should be be same to just calculate a new point and place it into the square at
random.

1.46 2.3 Fractals --- 2.3.10 Brown

ChaosPro 66 / 115

2.3.10.1 Brown - Theory

Now lets come to the next fractal type, the Brownian Motion. Don’t panic, I don’t ←↩
bother you with

a view from the probability theory, so I don’t tell you something about infinite ←↩
paths, non-differentiable

at any point and so on.

Basically I don’t have to explain anything to you, because ’Plasma’ is a two ←↩
dimensional Brownian Motion.

Such a Brownian Motion has some very pleasant properties. For example you can draw ←↩
a 1 dimensional Brownian Motion onto

the screen and it just looks more like a music sample than a mathematical object. ←↩
You can change the dimension of

the fractal by adjusting a parameter. Of course you wonder, how it sounds, if one ←↩
decides to play this

brownian motion. ChaosPro can do this, don’t panic.
After some examinations people have found out, that music shows some similarities ←↩

to brownian motion, that means, you
can ’play’ a brownian motion and it makes sense...
You shouldn’t expect to hear nice sounds or nice music. You only hear something, ←↩

that’s all.
The music sounds a bit strange, somehow from an alien planet, from a foreign ←↩

culture.
And of course you can expect, that typical elements of music, such as refrain, ←↩

themes, etc.
appear with brownian motion. So please keep your CD’s from Mozart, Beethoven, the ←↩

Beatles,
etc...

1.47 2.3 Fractals --- 2.3.10 Brown

2.3.10.2 Brown-Parameter 1

Scaling
Specifies a factor, which is needed for the calculation. It must be between 0 and ←↩

1. The closer to 1, the longer
it takes for the fractal to finish. This parameter doesn’t have anything to do ←↩

with the graphical
representation, it determines dierectly the number of passes it needs to calculate ←↩

the fractal. This parameter is here due to the
algorithm I use for calculating the fractal.

H
Determines the dimension, Dim=2-H...

Samples
Specifies the number of points, which are calculated for the Brownian Motion
.

Play & Stop
Starts/stops playing the Brownian Motion. The height is defined by ’Rate’, the ←↩

type (music or sample)
by ’Mode’.

ChaosPro 67 / 115

Mode
This gadget determines, how the Brownian Motion should be played. There are 2 ←↩

possibilities:
Sample or Music. The first one just creates a sample, which then is played, and ←↩

the second one plays
music, i.e. it plays tunes.

Rate
This gadget lets you specify the height of the sound.

1.48 2.3 Fractals --- 2.3.11 3D-Ansichten

2.3.11 3D-Views

2.3.11.1 3D-Introduction

The 3D-modul is a kind of modul, which could easily be converted to an external ←↩
modul.

It takes no care, to what fractal (if anyhow) the data belong, which it gets from
an array. This method of course has a few disadvantages, because so this modul can ←↩

’t
get additional values, if it would need them in order to increase the quality of ←↩

the view.
But an advantage is, that in a later version of this program another person but my ←↩

can
build an array of heights and then give it to this modul, which forms something ←↩

threedimensional out of it.
So you save a lot of time. You needn’t write routines of your own. Additionally, I ←↩

can build in a
routine (or you write your own), to use such a heights-file from SceneryAnimator ←↩

or
a similar program. Well, much is possible, but what I’ll implement, you decide ←↩

with your
reactions.

1.49 2.3 Fractals --- 2.3.11 3D-Views

2.3.11.2 3D-Parameterwindow 1

Projectionmode
There are 2 modes available:
1. Orthogonal: This is the favorite method. Here every point is simply projected ←↩

onto
a 2D-plane by an orthogonal projection. The distance doesn’t affect the picture, ←↩

it’s
meaningless. The implementation of a horizontal angle isn’t possible, I tried it.
Instead use the rotation of the 2D-fractal. This mode always draws the picture in
the best possible quality.
2. Perspective: This is the old, bad method, only implemented again due to the ←↩

wish
of my favorite betatester. Here the 3D-object is projected onto a 2D-plane, just
like the human eye does it. Here more things can be adjusted. The big disadvantage

ChaosPro 68 / 115

of this algorithm is, that the whole algorithm is very complicated and can’t be
simplified for the computer. This makes this mode very slow. The whole code also ←↩

is
very long and complicated, so enhancements are really a pain.

Drawingmode
Only with Projectionmode = Projection...
Here you can choose, how all the points are to be displayed:
1. Points: just draws the points
2. Gridlines: draws lines between the points
3. Rectangles: draws a rectangle out of 4 points
4. Spikes: draws spikes starting from the ground.
5. Mosaic: simply draws small rectangles of size 2x2 at every point
6. Cross: draws small crosses at all points

The best thing is to try it...

Distance
Only with Projectionmode = Projection...
Name says all...

H-Angle
Only with Projectionmode = Projection...
- The horizontal angle, from which the observer looks at the object. It ←↩

corresponds
to the degree of latitude on a globe.

V-Angle
- The Observer always stands right in front of the fractal and looks from a ←↩

certain height onto
the fractal. The height is defined by the vertical angle, which corresponds to the
degree of latitude of the earth.

Light
- If checked, a lightsource exists , which is infinite far away. The position of ←↩

the lightsource is
defined by the horizontal and the vertikal angle, which correspond to the degree ←↩

of longitute and
latitude of the earth. Suppose, Amerika lies at the H-Angle 0, then Europe lies at ←↩

about 90 and Japan perhaps
at -90. If light isn’t checked, then the original colors are used.

Intensity
Diffuse
Ambient
Reflection
- The brightness of an area is defined by these values:

* ’Intensity’ determines the intensity of the light source, so that you now slowly ←↩
can switch on

a light source (perhaps you calculate an animation). This value must be between 0 ←↩
and

1.

* ’Ambient’ is a number between 0 and 1 and determines, how much light falls on ←↩
every area, independent to whether light from the lightsource

falls on it. A value of 1 doesn’t make much sense, because then every area would ←↩
be drawn with an intensity

of 1 (brightest light).

ChaosPro 69 / 115

*’Diffuse’ determines, in what proportion the light from the lightsource stands
to the reflected light. A value of 0.8 means, that 80% of the intensity of an area ←↩

is defined by the angle,
in which the light from the lightsource falls on it, and 20% of the intensity of ←↩

the area by the angle, which
is enclosed by the vector of the reflected light and the vector from the observer.
To be more general, it defines, whether the 3D-picture shines due to reflected ←↩

light or due to light from the
lightsource.

* ’Reflection’ determines, how strong the areas reflect the light, which falls on ←↩
them. 1 means strong, 2 means less strong,

0.5 means very strong, etc.

GridX and GridY
Only with Projectionmode = Projection...
- Here you can define the resolution of the X- and Y-direction. Smaller values ←↩

result in
a speed up of the drawing, but of course they lower the quality...

1.50 2.3 Fractals --- 2.3.11 3D-Views

2.3.11.3 3D-Parameterwindow 2

DeltaX/Y
- The object itself is drawn around the nullpoint. In order to move it, these 2 ←↩

sliders
have to be used.

DeltaZ
- With this gadget you can move the object up or down.

Invers
- Inverts all heights. This makes out of the Mandelbrot-mountain a Mandelbrot-
valley...(I prefer valleys...)

Autoadjust
- Tries to move and size the 3D-fractal in a way, so it fits entirely into the
window.

FrontMult
BackMult
- Determines, with what numbers the heights in the front or in the back have to
be multiplied. Normally you set these 2 numbers to the same value. But if you want
to give the object more plasticity, I recommend raising the BackMult-number a bit.
The heights in the mid are multiplied with (FrontMult+BackMult)/2, so it’s going
from FrontMult to BackMult in a linear manner.

Slope
- This value defines, how steep the mountains and valleys should be.
Smaller values ==> less steep
Greater values ==> more steep
The function is:
x^(1/Slope)
,where x stands for the height to be transformed. That means, if Slope is equal
to 2, then the function is x^0.5, which is the square root of x.

ChaosPro 70 / 115

YStretch
This values defines the factor for the y-direction of the object. This direction
points to the ’back’ of the object. If the 3D-view appears to be a bit too ’short ←↩

’,
then you should raise this value to greater than 1.

Water
Plateau
- ’Water’ defines the waterlevel. All heights, which would be lower than this ←↩

value,
are considered to belong to an ’ocean’ and are set to this height. The color of ←↩

the ocean is
determined by the angle the light falls onto it.
- ’Plateau’ defines the plateaulevel. All height, which would be greater than this ←↩

, are considered to form a
plateau with exact this height. Again, the color of the plateau is determined by ←↩

the angle the light
falls onto it.

1.51 2.3 Fractals --- 2.3.11 3D-Views

2.3.11.4 3D-Parameterwindow 3

colors to use
Here you define the colors, which are to be used for coloring the 3D-fractal.
The first 3D-color is considered to be ’black’, i.e. it is used for an area,
onto which the light doesn’t fall, and the last 3D-color then is ’white’, i.e. ←↩

used for an area, onto which
the light directly falls.

Background
At the beginning of the 3D-view-drawing the whole window is cleared with this ←↩

color.
If areas remain free, then they appear in this color.

Dithering
You can choose one of 3 modes: The first, no dithering, the second, which tries
to double the number of colors trough dithering, and the third, which tries to
get 4*NumberOfColors through the aim of dithering.

ExtBuffer
If you make a 3D-transformation of a 2D-fractal, then of course only the buffer ←↩

values
can be transformed. But this most likely results in an image, which seems to be ←↩

cut in
the front and in the back. ’ExtBuffer’ now allows you to increase the (vertical) ←↩

size
of the buffer in percent, so more buffervalues are available. For a 2D-fractal ←↩

this
is totally useless, i.e. set ExtBuffer to 0. If you make a 3D-transformation, ←↩

values at about 30 to 50 may be useful
(30% to 50% of the original 2D-buffer-size added).

Saturation

ChaosPro 71 / 115

Value
These values only have an effect, if you save the 3D-picture in 24 Bit. In the 3D- ←↩

buffer the
original colors and the lightintensity is stored for each pixel. These 2 gadgets ←↩

determine, how
the information of the color and the light are combined to form the resulting ←↩

color.
Saturation: Determines, how much influence the lightintensity has on the ←↩

saturation of the original color.
The range is from 0 (light doesn’t affect the saturation) until 100 (saturation ←↩

comes totally
from the light-intensity).
Value: See at ’Saturation’ 3 lines above, but now the value of the color will be ←↩

affected by the light.

Normally one sets the value to 100 and the saturation to 0, this means the ←↩
original color is taken,

converted into the HSV-colormodel, the value replaced by the light at this place, ←↩
then converted into RGB-Format

and stored.

Riemann
(not implemented!)
- Fractals are almost always representations of what happens to complex numbers, ←↩

if they are iterated
in a specific manner. Every screenpixel corresponds to a complex number. Now ←↩

Riemann
has thought out another representation for the complex numberplane. Normally one ←↩

speaks from
the comlex numberplane, the one axis is the real axis, the other the imaginary ←↩

axis.
Riemann now has transformed this plane onto a spheare. This spheare has the radius ←↩

1 and
touches with its southpole the complex numberplane in the origin, the nullpoint.
Now, how is the new point calculated from the old one? If you have a point of the ←↩

complex numberplane, you
simple have to draw a line between this point and the northpole of the spheare. ←↩

This line
will run through the surface of the spheare. And this point is the new one, which ←↩

corresponds to the old.
Well, all’s fine, every complex number is matched to a single point of the surface ←↩

of the spheare, but
there’s one exception. The infinity. It consists of infinte many points. But all ←↩

of these are
matched to a single point on the spheare: The northpole.
Perhaps this is it, why in the theory of the fractals almost always the infinity ←↩

is
considered to be an attractor, because it’s on the Riemannspheare just a single ←↩

point.
Well, this program can draw the 3D-representation of the Riemannspheare. But it’s ←↩

not
the standard Riemannspheare, because it touches the complex plane in the origin ←↩

and has a fixed
radius of 1. This program calculates itself the point, at which the spheare ←↩

touches the plane, because
otherwise it wouldn’t look very good. The radius you can set. If it would always
be 1, then it would look not like it is supposed to look.

ChaosPro 72 / 115

Just imagine, what it would look like, if you would zoom into the fractal and then ←↩
see a

representation of this. For people with less fantasy: There are much too less ←↩
values, so

if you have the whole spheare in front of your eyes, then eventually there is just ←↩
the little area

visible, which corrresponds to the fractal. Now if one thinks, that somebody ←↩
simple have to

zoom the spheare, then the area of the spheare would look like a plane, just like
a landscape don’t look like something on a spheare, although it’s on a spheare,
the earth.
You can let the program set the radius for you. Simply click onto the ←↩

corresponding
gadget, and the program calculates a radius, so the whole fractal will happily ←↩

fill
the spheare...

1.52 2.3 Fractals --- 2.3.12 Wizardwindow

2.3.12 Wizardwindow

This window is available for the animation system, too. But the AnimWizard window ←↩
will display only some information, no analysis

of iteration or heights...

Dependent on the fractal type, this window contains different data.

Information
Here you find the duration of the calculation process, eventually how often you ←↩

have zoomed in,
the number of bytes, which are used by the buffer, a progress indicator, the ←↩

arithmetic used
and perhaps some other stuff.

Analyze
Here you find the profile of the iteration values, i.e. how may points of what ←↩

iteration
depth exist. This is very useful, because you see, whether the iteration depth is ←↩

too large.
Also good, in order to get optimal values for the colormapping, because you can ←↩

decide more easily,
how the colormapping function has to be. The higher the bar in the iteration ←↩

profile graph,
the higher should be the first derivation of the colormapping function at the same
place.

Heights
Well, one of the biggest problems with ChaosPro is to find suitable values for the ←↩

3D-transformation.
If you choose this mode, then the program draws a graph, in order to draw the ←↩

actual transformation function. This way you immediately see, what
effects the parameters have.

ChaosPro 73 / 115

1.53 2.3 Fractals --- 2.3.13 Commentwindow

2.3.13 Commentwindow

Well, sometimes it’s useful to give some hints to fractals. Also some people are ←↩
pleased to see their name appearing with fractals, which

they have found.
Ok, you see the use of the window and the gadgets immediately, so I don’t want to ←↩

waste my time by
explaning every gadget...

1.54 2.4 Menus

2.4 The Menus
2.4.1 Systemmenu

Other Menupoints:
Fractalmenu
Fractalwindows
Windows
Extras

Data load/save
- This menuitem loads/saves the fractaldata out of/into a file. If the file is ←↩

saved to
the directory ChaosPro/FractPic, then it will automatically be loaded and it’ll ←↩

appear
in the listviewgadget, which contains all the fractals. If a file is loaded at ←↩

runtime,
then it will be added to the list, which is already shown in the listview of the
PicTask-window.
When saving the program takes care, whether the 3D-fractal window is open. If this ←↩

is the case,
then it saves it as an active 3D-fractal, i.e. when this fractal is calculated the ←↩

next time, both windows, the
2D- and the 3D-window are automatically opened.
Starting with V2.0 ChaosPro is able to load Mand2000, Mandelmania and compatible ←↩

fractal
data files.
ChaosPro now saves the data files automatically into every IFF-ILBM picture, which ←↩

is saved, so
you can reload an IFF-ILBM picture and continue working with the fractal.

Picture/Load
If you have the datatypes.library (OS3.0 or higher), then you can load pictures ←↩

into ChaosPro.
If you choose this menuitem, then a requester appears, asking you for a picture to ←↩

load. After that
the datatypes.library will be opened and the picture will be loaded into the ←↩

fractalwindow of the currently active
fractal. This window will be resized, so that the picture will suit into it. Due ←↩

to the use of the datatypes.library
I saved much time, as a side effect you can load every type of picture, as long as ←↩

the datatypes.library is able to understand

ChaosPro 74 / 115

it.
There exists another menu item, which belongs to this loading procedure, the item
’Settings/ Misc/ Picture Remap’. If this item has a checkmark, then during load ←↩

time the palette of the picture will be
adjusted to the screenpalette. The loading process then of course lasts a bit ←↩

longer. I personally don’t check this item, because I normally only load ←↩
fractals,

and there needn’t to be a ’remap’.

Save Picture/to Clipboard
- This item saves the picture as an IFF-ILBM-picture. For the fractaltypes ←↩

Juliaset/ Mandelbrot/ Plasma/ Lyapunov-Space it’s possible, to save the 2D- ←↩
picture

in any depth upto 8 planes (256 colors) independent from the hardware and from the ←↩
actual screenmode (it will be

saved, not displayed...). You are prompted for your favorite depth after choosing ←↩
the filename.

This enables the owners of older Amigas to save a picture in 256 colors, and then ←↩
to convert it

to a HAM6-picture by another program.
Additionally, there were some people, who wished to save 24Bit-images. This is ←↩

also possible.
When prompted for your favorite depth, there are two more possibilities: 24 (←↩

Screen) and 24 (256).
The first one saves the picture with the colors used on the screen, but with a ←↩

depth of 24 bit.
The program actually calculates more colors than it can display and then ←↩

calculates down to the
available number of colors. If now there are areas on the screen with the same ←↩

color, then it’s possible, that the program had to
assign the same color to various values, which didn’t differ too much. If the the ←↩

24bit-image is saved, then
there are enough colors available, so the used palette is ’blown up’, and so the ←↩

correct color is used. This creates a smooth
flow from one color to the next.
Please notice, that when using the iteration-coloring with Julia/Mandel optically ←↩

the 24bit-image is identical to
the image, which you get, when you save it in , say, 256 colors. If you here ←↩

really want, what I gess you want,
many many colors, smooth flows from one color to the next etc., then you have to ←↩

use the
CPM-method.

The other possibility, 24(256), takes the whole palette of 256 colors, blows it up ←↩
, and then saves the image.

This is identical to choosing 256 colors, but now perhaps areas of the same color ←↩
are replaced by a color-flow to

the next color.

Well, don’t be disappointed: If a fractal doesn’t contain areas, then the 24bit- ←↩
image doesn’t look

(recognizeably) other than the one with, as example, 6 planes. So to save a plasma ←↩
-fractal with a high granulation is somehow not

intelligent. Think over it, and you’ll recognize, why.

With the Bifurcationdiagrams and the dynamic systems and also with the 3D-views of ←↩
the fractals all these additional possibilities don’t exist. The fractal is

ChaosPro 75 / 115

saved exactly like it’s displayed. Exception: If the fractal has a 3D-buffer, then ←↩
it can be saved in

24 bit.

Print
- I thought about implementing a routine for printing fractals for quite some time ←↩

. Finally I came to the conclusion, that
it doesn’t make much sense to write such a routine, because it would have to be a ←↩

really good routine.
One wants to print fractals in the best possible quality, so I would have to use a ←↩

color management system.
But AmigaOS doesn’t offer a CMS. Due to this I simply have used the server ←↩

function of ’Studio’ from
Wolf Faust. So I have a great print routine, a color management system, so that
the fractals on the paper look exactly like on the screen. Of course, in order to ←↩

print, one first
must have ’Studio’ from Wolf Faust.
Annotation:
If you choose this menu item, ChaosPro first saves the fractal in the temporary ←↩

drawer. So the user
will be asked about the depth of the fractal. The temporary drawer is ’ChaosPro:’, ←↩

but can be changed
using the tooltype ’Virtual=<Dir>’. After saving the image Studio is called ←↩

asynchronously, which
then prints the picture and deletes it after printing.

Systeminfo
- This item shows a few informations about the processor/ coprocessor/ gfxchips/ ←↩

priority and
the memory

About ChaosPro
- It shows information about the Author and the version of the program.

Quit
- Explanation necessary?

1.55 2.4 Menus

2.4.2 Fractalmenu

Other Menupoints:
Systemmenu
Fractalwindows
Windows
Extras

Juliaset
Mandelbrot
Bifurcation
Dynamic System
Plasma
Lyapunov-Space
Diffusion
IFS

ChaosPro 76 / 115

L-System
Brownian Motion
- These items add a new fractal of the corresponding type to the listview-gadget. ←↩

They are initialized with
the default values for the type.

Defaultvalues
- If you have changed the parameter of a fractal and now don’t know, how to come ←↩

back to
some good values, then you can choose this item. It sets the parameters to the ←↩

defaukt values
of the type.

Edit Windowsize
- ’Edit Windowsize’ shows the actual size of the 2D-window and lets you input new ←↩

values. The
maximum size isn’t the screensize, but the screensize minus the bordersize. This ←↩

function
currently can’t convert a normal window into a backdrop-window and back. I ←↩

currently consider
it as a feature rather than a bug, that this window doesn’t automatically convert ←↩

backdrops
to normal windows, because now it’s possible to make a backdrop-window and then to ←↩

size this
window with the new menuitem (of course, it may be somehow confusing, if a window ←↩

without a border
exists somewhere on the screen..)

Zoom
- ’Scale in’ - ’Scale out’
- ’Scale in’ is just the same as a doubleclick into the mid of the fractal window.
’Scale out’ makes the opposite including the scaling etc.

- ’Box in’ - ’Box out’
If you choose one of these items, then you can click anywhere into the 2D- ←↩

fractalwindow (you may leave the button again...).
Then you carry a frame around. Click again to leave the frame. If you have chosen ←↩

’Box zoom in’,
then the box defines a new area, which is made bigger, so it fits exactly into the ←↩

window. If you have chosen
’Box zoom out’, then the whole window is projected into the defined box, and the ←↩

fractal with the new area-values
calculated again.

Undo/Redo
- Unlimited Undo/Redo for every fractal. There is always a buffer of 10KB size ←↩

allocated, in which
the old values are stored.

Move...
- This moves the fractal, you can achieve the same, if you press the cursor-keys
in the 2D-fractalwindow.

Proportion
- if the fractal is heavily distorted, then the proportion of the area-values ←↩

doesn’t fit to

ChaosPro 77 / 115

the actual proportion of the width to the height. This item restores the ←↩
proportion by adjusting the

area-values.

Calculation
- Stop/Continue: Because the program runs in a multitasking environment, it is ←↩

possible, that
you calculate more than one fractal at the same time, but want to finish one ←↩

specific
fractal as quick as possible. This item stops the calculation of the active ←↩

fractal. The task
is put to sleep (by a totally systemconform method...) and can be waked up by ←↩

choosing
’Continue’.
- Restart: This forces the fractal to draw itself again.

Picasso
Close Picasso
- If this item works, then it would display the 24 Bit-image directly on the ←↩

Picasso-gfxboard
from Village Tronic.

Access EGS
- This item should open a window on the EGS-Default-Screen and then should draw ←↩

the 24-Bit-fractal
in it.

Start virtual
You can choose this item only in conjunction with Julia-/Mandelbrotsets. Parameter ←↩

window No. 3
contains 4 gadgets, which let you define values like Size/Depth/3D. If you choose ←↩

this
item, the corresponding subtask switches to a virtual mode and starts the virtual ←↩

calculation directly
onto your harddisk. More information can be found in parameter window no. 3, point
Virtual Calculation

Export/Reflections
Well, this is the first try for an export into a raytracing format. If you have ←↩

Reflections, just test it, perhaps it
works. There will appear some requesters, which ask you for the resolution of the ←↩

object, because the program can’t use
the whole resolution, because at least ReflectionsV2.0 can’t handle more than ←↩

32767 triangles.
At the end 2 files will be saved, one file with the name *.obj, and one with the ←↩

name

*.mat.

1.56 2.4 Menus

2.4.3 Fractalwindows

Other Menupoints:
Systemmenu
Fractalmenu

ChaosPro 78 / 115

Windows
Extras

Parameter 1...
Parameter 2...
Parameter 3...
- These items open/close the parameterwindow 1/2/3. The kinds of parameters and
what they mean, is explained in the corresponding chapters.

3D-Parameter 1
3D-Parameter 2
3D-Parameter 3
- The 3D-parameterwindows are opened/closed by these items. For more information
about parameter refer to Chapter 2.3.7

Datenwindow
- Some types of fractals have datawindows available. If you open such a window and
move over the 2D-fractal with the mousepointer, then in the datawindow the data ←↩

below
the mousepointer are displayed.

Wizard window
- Opens/Closes the Wizardwindow

Comment window
- Opens/Closes the Commentwindow

Formula window
- Opens/Closes the formula window.

Show Location
- Juliaset, Mandelbrotset, Bifurcation, Lyapunov-Space have a 2D-area. You can ←↩

zoom in. And suddenly
you don’t know exactly, where you have zoomed in, and where you now are. The area ←↩

parameter in the parameterwindow 1
show it, but it’s not clear enough. This item opens a window for the active ←↩

fractal. In this window
all fractals of the same type are displayed. If you choose one of them, then in ←↩

the 2D-window the area of the
chosen fractal is drawn as a frame.

Set Juliaparameter
- This item is only choosable in conjunction with the a mandelbrot fractal. It ←↩

opens a window, in which
all available juliasets are displayed. If you choose a juliaset, then the ←↩

parameter of the juliaset, mostly called c, is drawn in
the mandelbrotset as a cross. This cross you can move around, and so change the ←↩

parametervalue c of the juliaset, which is drawn again
immediately. There was mentioned above, that the most interesting, that means, the ←↩

most colorful juliasets have parametervalues c, which are placed
at the edge of the mandelbrotset. But where’s the edge of the mandelbrotset, if ←↩

you only have a complex number?
With the help of the cross you know it exactly.
But pay attention: Julia- and mandelbrotsets should be of the same subtype, that ←↩

means, they should
be drawn upon the same formula. Otherwise all said about interesting juliasets at ←↩

the edge of the mandelbrotset

ChaosPro 79 / 115

is totally nonsense.

Colormapping Window
- Opens/Closes the Colormapping window

Windowtype as Backdrop/normal Window
- Eventually somebody wants to use the whole place on the screen for a fractal, ←↩

like
most other fractal creating programs do. But if a windowborder exists, this isn’t ←↩

possible.
So you can define a window as a backdrop window. In this case, the whole window is ←↩

closed,
the border, the systemgadgets, the title removed, the window sized to the full ←↩

screen size,
and then opened again as a backdrop-window. This can be done with the 2D/3D-window ←↩

.
But pay attention: Because you now don’t have a depthgadget in the windowframe, ←↩

you can’t alter
the (depth-)position of a window. So one can dispute about the sense or nonsense ←↩

of more than one
backdrop at the same time.

1.57 2.4 Menus

2.4.4 Windows

Other Menupoints:
Systemmenu
Fractalmenu
Fractalwindows
Extras

Formeleditor für Julia/Mandel
Formeleditor für LSystem
Formeleditor für IFS
Palettewindow
Palette-edit-window
Animation 1&2
CycleControl
AnimWizard
Output
Userwindows

Here I can refer to chapter 2.2. There all you should know is
said.

Perhaps one annotation: By using these menuitems, you can only open the first 4 ←↩
user defined windows.

If you have more, then you have to use the Arexx-Port to open the additional ←↩
windows. Then you can define

a user defined menu item, which executes your Arexx-script.

ChaosPro 80 / 115

1.58 2.4 Menus

2.4.5 Extras

Other Menupoints:
Systemmenu
Fractalmenu
Fractalwindows
Windows

Help
- Shows the contents node of the online-help. If somebody wants help to a specific ←↩

topic,
then he can use:

1. Menuhelp
You choose a menuitem, but don’t leave the right mousebutton, so the item isn’t ←↩

chosen, but highlighted.
Then you press the Help-key. The operating system then reports to my program, that ←↩

the user wants help for this menu item. Then my program shows the
correct page automatically.

2. Self implemented Gadgethelp
My program maintains big datalists, in which the positions and sizes of all ←↩

gadgets are
stored. If you now press the Help-key, then my program scans through it’s lists, ←↩

searching for a gadget
below and shows the help-page for this gadget. If the mousepointer isn’t placed ←↩

over a gadget, then the
default-helptext for the window is shown.

Global Stop
Global Continue
- Stops calculation of all fractals, puts all tasks to sleep. Useful, if another
program needs all CPU-power.
’Continue’ wakes up all tasks, if they were put to sleep.

Colorcycling
- On
This item switches the colorcycling on (checked) or off (not checked).
- Upwards
This item defines, whether the colors should be cycled upwards (checked) or ←↩

downwards (not checked).
Upwards means, to higher colornumbers.
- Faster/Slower
Speed of colorcycling. For colorcycling a separate task is created. According to ←↩

the RKM-Libraries
nobody may alter the colortables.
Because now the taskswitching takes place only ca 50 times per second (or was it ←↩

20 times?), the maximum
speed of cycling is limited. Everybody, who works with 256 colors, has also to ←↩

consider, that
to alter 256 colors is much work for the operating system. It must recalculate the ←↩

whole copperlists, link
them together and display them. This takes away much CPU-time, so it slows down ←↩

the system.

ChaosPro 81 / 115

Btw.: The cycling task runs at a priority of 0, more axactly at GlobPri (GlobPri ←↩
you can set). So when another program calculates something at a priority of

1, then colorcycling doesn’t take place.

Taskpriority
- This alters the task-priority of the main task and of the colorcycling-task. All ←↩

fractal-calculating tasks
run at a priority of the maintask-1. Default-pri for the maintask is 0, so fractal ←↩

-calculating tasks
run at a priority of -1, so you can work normally on the workbench or in any other ←↩

program.

Move Window...
- onto Fractalscreen / onto Parameterscreen / onto Workbench / onto Publicscreen

These items close a window and open them again on the specified screen. This can ←↩
be done with every window except the

2D- and the 3D-fractalwindows. This options make sense, because the place on a ←↩
screen is limited, even if it’s a big screen.

This saves also memory, because a parameterwindow needs much more memory on a ←↩
screen with 256 colors, than on 4-color-workbench.

You can define the default-screens of the windows by the preferences-program.

Window positions
Here you can specify the screen, on which the correspondig window should open as
default.

Misc/Picture remap
This menu item belongs to ’Load picture’ and determines, whether the pictures, ←↩

which will be loaded, should be remapped
to the current palette.

Misc/Show coords
If checked, the screen title bar is used to display the complex coordinate, which ←↩

corresponds to the current mouse pointer position and
to the current fractal.
Because this constant update of the screen title bar needs much CPU power and this ←↩

value additionally is available in the data window,
you can switch it off. The tooltype ’CoordShow’ defines, whether this menu item is ←↩

selected at startup or
not.

Misc/GuiFactorX
Misc/GuiFactorY
Inside ChaosPro all gadgets and windows are specified in units of the fontsize, ←↩

and not in units of pixels.
There exists a global routine, which handles opening of windows containing gadgets ←↩

, borders, etc. This routine
then calculates the pixelsize of all elements from the fontsize of the elements.
Due to this the whole GUI of ChaosPro is fontsensitiv. But there are many ←↩

different fonts
out there. And I have choosen my favorite font, XHelvetica 11 from Martin ←↩

Huttenloher (contained in MagicWB),
so the GUI looks of course best with this font. But due to this it of course may ←↩

happen, that sometimes, especially with a small font,
like topaz 8, the GUI looks rather ugly.

ChaosPro 82 / 115

These 2 factors now enable it to stretch the whole GUI in x- or in y-direction. ←↩
This is just like

having a sizegadget on all windows, but less comfortable for the user (but more ←↩
comfortable for me ;-)).

These 2 factors you can choose according to your font and according to your taste, ←↩
so the GUI looks

better. After that you can save the config-file, because these 2 factors of course ←↩
are placed in the config-file, so your changes

don’t get lost when you leave ChaosPro.

Misc/Publicscreen
Here you can define the name of the Public screen, which can be used to place ←↩

windows on it. After you have chosen this name you should save the config file, ←↩
so you

don’t have to specify this screen again.

Misc/Accuracy
Here you can choose, at what zoom level the change to the next more accurate ←↩

arithmetic
is performed. Currently there are 4 different arithmetics available: FPU (about 64 ←↩

bit), 96
bit, 128 bit and 160 bit. So there exist 3 levels, at which ChaosPro switches to ←↩

the next
more accurate arithmetic. Default is, that at a zoom level of 53 the 96 bit ←↩

arithmetic is used,
at a zoom level of 86 the 128 bit arithmetic and at a zoom level of 116 the 160 ←↩

bit arithmetic.
This you can change with this menu item. If a fractal suddenly contains strange ←↩

pixels, which apparently
don’t belong to it, then this is a good sign, that the accuracy isn’t sufficient.
In this case you should call this menu item and lower the zoom level, at which ←↩

ChaosPro
switches to the next more accurate arithmetic.

Choose Screenmodes...
Choose Font...
- These items should be clear...
If they are chosen, then all opened windows are closed, the values changed, and ←↩

the windows again
opened.
The minimal screendepths are:
1. Parameterscreen: 1
2. Fractalscreen: 3
3. Colorscreen: 4
- For the font all is possible. But: If a window doesn’t fit onto the screen, then
you must choose a smaller font. This concerns mainly all those people, who use a ←↩

resolution
of 640x200 or 640x256. Topaz 8 is almost too large.

Screencolors
Here you can change the first 4 colors of the screen. These are the colors, which ←↩

ChaosPro
doesn’t change, so all the GUI elements stay visible. Unfortunately the palette ←↩

requester
allows it to change all colors. But only the first 4 colors should be changed. The ←↩

other

ChaosPro 83 / 115

colors belong to ChaosPro and are changed by the palette window and the color ←↩
palettes.

After changing the GUI colors, you should save the config file, otherwise your ←↩
changes

will be lost, if you quit ChaosPro.

Config load/save
- These menu items let you load/save different configurations. These files contain ←↩

(almost) all internally
changeable data like screenmode, font, currently opened windows, positions of the ←↩

windows
etc.

1.59 2.4 Menus

2.4.6 User defined Menus

For this purpose, again an ASCII-file in the directory ChaosPro/Prefs with the ←↩
name

Menu.asc is required. This file has to be translated by the preferences-program. ←↩
The result is

a file called Menu.prefs in ChaosPro/Prefs.

The structure of the ASCII-file is:

MENU <Menutext> <Keyboardshortcut> <Arexx-Script>
ITEM <Itemtext> <Keyboardhortcut> <Arexx-Script>
...
ITEM <Itemtext> <Keyboardshortcut> <Arexx-Script>
MENU <Menutext> <Keyboardshortcut> <Arexx-Script>
...
END <Menutext> <Keyboardshortcut> <Arexx-Script>

Well, at the lines MENU and END of course the Keyboardshortcut and the Arexx- ←↩
script

don’t have sense, but must be given.
For the menutext also the constant BARLABEL may be used. It generates a separator ←↩

bar
For the keyboardshortcut also the constant NONE may be used, if you don’t want to
define a shortcut.

As an examples, it could look like this:

MENU Menu1 NONE dummy.rexx
ITEM Data B Daten.rexx
ITEM BARLABEL NONE dummy.rexx
ITEM Another C Another.rexx
MENU Menu2 NONE dummy.rexx
ITEM InOut D ChaosPro:Rexx/InOut.rexx
END BARLABEL NONE dummy.rexx

Note:
At startup the program creates a logical assign ChaosPro: to the directory, where ←↩

the program is placed, if not already available. So you may use

ChaosPro 84 / 115

a path for a rexx-script like ChaosPro:Rexx/InOut.rexx.

1.60 2.5 Programdirectories

2.5 Programdirectories

Basedirectory, from which the program refers to its various subdirectories, is ←↩
always the logical assign ’ChaosPro:’.

If this assign at startup of the program exists, then all is ok. If not, then the ←↩
program tries to find out, from what directory it was started (with a call

to GetProgramDir from dos.library). After that it creates itself the logical ←↩
assign ChaosPro: to the found directory.

So normally you don’t have to worry about assigns.

ChaosPro:libs/
Here all libraries, which the program needs, are placed. You may not copy these ←↩

libraries
to LIBS:, because only my program needs it, they aren’t documented and, by the way ←↩

, they
aren’t really libraries. Due to this, the whole program is very easy to deinstall. ←↩

Simply
delete the main directory, if you don’t like the program...

ChaosPro:Guides/
Here the documentation of the program is placed.

ChaosPro:Prefs/
All settings of the program are placed in this directory.

ChaosPro:Palette/
ChaosPro needs at least one palette in this directory. Otherwise it refuses to ←↩

work
and brings up an error requester. At startup it scans this directory, examines all ←↩

files
in it, and extracts all colorchunks of the files. So its possible, to place whole ←↩

pictures
into this directory. It then scans through the file and only takes the color
chunk of it.

ChaosPro:Catalogs/
In this directory the catalogs for other countries are placed. Because I only ←↩

speak german and
english (and english not very good...), here only two catalogs are made by me. ←↩

Perhaps
some other people would like to translate the catalogs?

ChaosPro:FractPic/

At startup of the program this directory is scaned. All files, which contain a ←↩
chunk

describing a fractal, are automatically loaded into the program. If a fractal ←↩
needs a user defined formula, then it loads it,

too, if it doesn’t already exist.

ChaosPro:Anims/

ChaosPro 85 / 115

ChaosPro:AnimData/
ChaosPro tries to load/save animations or animationdatas from these directories in ←↩

the first
place.

ChaosPro:Formula/
This directory is scanned at startup, too. All user defined formulas, which aren’t ←↩

already
in memory, are loaded and can be used during runtime.

1.61 2.6 Preferencesprogram

2.6 Preferencesprogram

In order to translate specific files there exists external preferences program. It ←↩
offers

the following options:

Compile Userwindows
User defined windows are defined in an ASCII-file. This ASCII-file
must be translated into a format, which the mainprogram can more easy handle. You ←↩

simply have to click
onto this gadget. Then the ASCII-file ChaosPro/ Prefs/ Windows.asc is scanned and ←↩

the
file ChaosPro/ Prefs/ Windows.prefs is created.

Compile Usermenus
User defined menus are also defined in an ASCII-file, which must
be translated into another format. This is handled by this gadget. It creates from ←↩

the input-file ChaosPro/ Prefs/ Menu.asc
the output-file ChaosPro/ Prefs/ Menu.prefs.

The Online-Help
Because the program can run on any normal screen, it was necessary, to adjust the
online-help to run on any screen in any resolution in any font. Other programs ←↩

only
have a help-system, which looks rather good on a screen with 640 pixels ←↩

horizontally.
But then some people have a screen with 1024 pixel horizontally, and then the help ←↩

-system
is awful. What happens, if the user would like to use another font for the help?
It would look terrible. Suddenly all lines have different widths, if you use a ←↩

proportional
font. Due to this, the guide-file is also translated by the preferences-program, ←↩

so it
looks good on any screen in any font.

- GuideWidth
Here you define the width in screenpixel, the help-lines should be. Because the ←↩

windowborder also needs
some pixels, you normally have to subtract about 40 pixels of the with of the
screen, the help-system should run on.

- Language

ChaosPro 86 / 115

Here you define the language of the help-system. This is independant of the ←↩
AmigaOS

locale-system. Included are only 2 languages: german and english. Perhaps some ←↩
other people would like

to translate the online-help to other languages?

- Build Guide
If you click onto this gadget, then in the directory ChaosPro/Guides the guide- ←↩

file ChaosPro.guide is created. The original
files aren’t modified. ChaosPro.guide is a normal AmigaGuide-file, which you can ←↩

read with MultiView, Hyper
or AmigaGuide, but which is converted to the right format. This operation can take ←↩

a
long time (on my Amiga 4000/040 about 60 seconds), because 1. the guide-file is ←↩

quite long and 2.
I didn’t care, whether it’s slow or fast, because 3. I think, that you’ll use this ←↩

option
not very often.
Dependent on the font it may happen, that a mysterious requester comes up ←↩

reporting the error
"Failed to create a line". Here you only can click onto ’OK’ and this you should
do.
In order to change the font of the guide-file or to change some explanations, you ←↩

can
of course change the file ChaosPro.guide. But this is somehow not intelligent, ←↩

because then
you don’t have the right format and all changes, you made, are destroyed, when you ←↩

again
click onto ’Build Guide’. So if you want to change something, you have to change ←↩

deutsch.guide
or english.guide. These files are also normal guide-files for AmigaGuide, Hyper or ←↩

MultiView,
but they aren’t in the right format. All lines have different lenghts. In these ←↩

files you can
change the @FONT-directive and set another font and size. If you want to change ←↩

some
text, then you have to pay attention, because a paragraph is finished with a line, ←↩

which
contains less than 76 characters. If you create a line with equal to or more than ←↩

76 characters,
then this line will be concatenated with the following, forming a paragraph, these ←↩

lines with
the next, etc., until a line is encoutered with less than 76 characters, which ←↩

stops
the paragraph. If a word is too long, it perhaps don’t look too good in the guide. ←↩

Due to this,
you can define, where a long word can be separated. This you define with the ←↩

backslash-character left
to the backspace-key at the right top of the keyboard. So you only have to insert ←↩

this character at the
correct places. The program then eventually separates the word at this position, ←↩

inserting a ’-’-character
or it simply removes the backslash.

ChaosPro 87 / 115

1.62 2.7 Troubleshooting

2.7 Troubleshooting

1. Problem
Sometimes the system hangs, when I try to use the Online-help.
Solution:
No solution. I don’t have an explanation of this behaviour. But because the ←↩

AmigaGuide isn’t
totally bugfree, I think, this is a failure of the AmigaGuide-system, which is ←↩

really
not bugfree.

2. Problem
How can I set the size and position of the AmigaGuide-window?
Solution:
By choosing the menuitem ’save settings’...

3. Problem
If the Help-Key is pressed, no AmigaGuide window appears, so the Online-help doesn ←↩

’t work.
Solution:
1. Perhaps the AmigaGuide-System isn’t installed correctly. In this case you ←↩

should get the
complete official AmigaGuide-distribution. Then you should install it.

2. Perhaps ChaosPro.guide or ChaosPro.Topics isn’t available. In this case you ←↩
should start

CPPrefs and click onto ’Build Guide’. More information about this you will find
in the chapter Preferences-Program

3. There exists a tooltype, which can be used to disable the Online-help, thus ←↩
saving

memory. It is called ’NO_AGUIDE’ and, if specified, prevents the program from ←↩
initializing

the Online-help.

4. Problem
ChaosPro crashes at startup.
Solution 1:
Well, one possibility, which was true in about 60% of all cases, is, that the user
has installed FastMathV40.5. This version has a serious bug, so you should upgrade
to FastMathV40.6...

Solution 2:
Have you installed PointerEyes? If so, check the version. It must be at least V4 ←↩

.1.
Otherwise ChaosPro will hang under some versions of the OS.

Solution 3:
Did you change the icon of ChaosPro? Then please check the stacksize. It must be ←↩

at
least 20000 Bytes...

ChaosPro 88 / 115

1.63 2.8 Others worth mentioning

2.8 Others worth mentioning

How do you input numbers? Of course with integergadgets. But what’s with ←↩
floatingpoint-numbers?

Unfortunately gadgets for this don’t exist in the system. So I was forced to write ←↩
a

Hook-function of my own, in order to make a float-gadget out of a string-gadget. ←↩
In this

float-gadget all senseless keypresses are filtered out. Some other key- ←↩
kombinations like RAmiga+X,

in order to clear the inputfield, make actions, which I think, they should do. ←↩
RAmiga+X

writes into the field the number ’+0.0’.
In order to alter the sign of the number, you only have to press the key ’+’ or ←↩

’-’ at any
place in the field. The sign at the first place changes immediately.
In order to set the decimal-point to another position, you simply have to press ←↩

the ’.’-key
at the desired place. The eventually already existing decimal-point is cleared and ←↩

set
to the new position.
Numbers in exponential-expression aren’t possible in the current version of the
Hook-routine.

Everybody, who has already used the program, will have noticed, that the active ←↩
entries in

the PicTask-window are changing sometimes, if the user activates another window. ←↩
This is of

course not random, it’s made by the program. The active window determines the ←↩
active entry in the

task-listview. Whenever you activate another window, the program searches for the
task, the window belongs to, and declares this task as the active one. ←↩

Additionally, it
scans through the whole menu and actualizes the items, so it disables some, ←↩

enables others and makes
checkmarks according to the active task.
If you don’t know any more, what fractaltype you are currently examining or to ←↩

what
task the window belongs, then you should have a look at the screentitle. There the
name of the fractal and the fractaltype of the task is displayed, which belongs
to the window.

I’ve tried to write this program style-guide conform. Due to this my program isn’t ←↩
the fastest fractal generating program.

Especially the owners of Mand2000 from CygnusSoft will notice, that my program isn ←↩
’t very

fast while scaling the windows.

Some people want to open some windows at startup automatically, or that something ←↩
other happens

immediately at startup. This possibility is offered through the AREXX-Port. At ←↩
startup

the rexx-script ChaosPro: Rexx/ ChaosProInit is executed. There you can execute ←↩
all

ChaosPro 89 / 115

commands you wish.

Well, almost all programs want a logical assign for their work. My program wants ←↩
something

like this, too. But I’ve applied another method: The program searched at startup ←↩
for the

logical assign ’ChaosPro:’. If this assign is available, then it searches for the ←↩
various

sub\directories, for example ChaosPro: Prefs, ChaosPro: Palette, ChaosPro: Formula ←↩
etc., in order to

get its files.
But if this assign isn’t available, then it creates it itself and removes it at ←↩

the end.
This means, that you may use at runtime, as example in your Rexx-scripts, the ←↩

assign ’ChaosPro:’.
It’s available in every case.

1.64 2.9 Tooltypes

2.9 Tooltypes

ChaosPro can be run from the CLI without changes. The tooltypes are accepted ←↩
without changes. For instance, you could start ChaosPro from the CLI

with the following command:

ChaosPro NOJOYSTICK CHUNKYMODE NO_AGUIDE VIRTUAL=dh2: PALETTES=dh3:Palettes

The startup code of the SASC-Compiler has the feature, that for a program it doesn ←↩
’t make any difference, whether it was started from the

CLI or from the Workbench.

The program currently supports the following tooltypes:

NOJOYSTICK
This command disables moving and zooming around with a joystick in port 2. This ←↩

was made,
because it’s possible, that somebody has a dongle in this port, which might cause ←↩

strange things,
if port 2 is accessed. So if you use a dongle (perhaps the REAL3D-dongle), then ←↩

specify this
tooltype.

CHUNKYMODE
This command specifies the routine to use for scaling the fractal, if you do a ←↩

doubleclick.
Normally this is done in the following way: The whole content of the window is ←↩

read with
ReadPixelArray8. After that the buffer, which contains the values, is scaled by a ←↩

routine of
my own. After that this buffer is converted to planeformat with a ChunkyToPlanar- ←↩

routine of
my own. After that ClipBlit is used to copy the planedata into the window. Now ←↩

consider, that
somebody has a Gfxboard and a the program runs on a screen with a chunkymode. Then ←↩

of course all

ChaosPro 90 / 115

works, but: After the buffer is scaled, my program converts it into the ←↩
planeformat, then I execute

ClipBlit, which is patched and internally converts the planedata back to the ←↩
chunkymode of the gfxboard...

If you specify CHUNKYMODE, the program doesn’t use a ChunkyToPlanar and ClipBlit, ←↩
but a WritePixelArray8, and the gfxboard

can take the values as they are, it needn’t convert them. Please note: The whole ←↩
program never directly accesses any planes of

any window on the screen. If all programs would be so, then fantastic fast ←↩
gfxboard-drivers could be

written.

COLORWHEEL
This tooltype specifies, whether the colorwheel should be shown for the palette- ←↩

editing.
Because it needs several colors to look like a "colorwheel", half of the number of ←↩

colors
on the screen are used for it. If you want to use all of the colors on the screen ←↩

for the palette-colors,
then don’t specify COLORWHEEL.

BUILTIN
If specified, then the builtin language (english) will be used. Otherwise the ←↩

language specified
by the locale-system. Only useful for me to some routines...

BACKFILL
If specified, then the window is filled with a raster before all gadgets are added ←↩

.
Well, it’s up to you to decide, whether you like it or not...

PGA_NEWLOOK
If specified, the proportional-gadgets get the ’new look’. GadTools doesn’t ←↩

support it.
So this bit is set by hand. Well, it works, but it’s an undocumented feature, ←↩

which don’t
need to work. Several authors use this bit and none of them encountered any ←↩

problems.
(Normally it’s not allowed to alter ANY bits in a GadTools-Gadget...)

NO_EGS
If not specified, the EGS-System, if installed correctly, can be accessed by a ←↩

menuitem. This item draws the actual fractal into
a window on the EGS-Default-Screen.

NO_AGUIDE
If not specified, the amigaguide.library is opened. This will add a ←↩

kontextsensitive
online-help to the program. If you don’t want it and want to save memory, then ←↩

specify
it.

NO_REXX
If not specified, the Arexx-Port of the program is initialized and the rexxsyslib. ←↩

library is opened, so
the Arexx-Interface is available. But perhaps you don’t use it, then why should it ←↩

be initialized and

ChaosPro 91 / 115

consume memory? In this case specify this tooltype.

PICTURES=<Dir>
This tooltype specifies the directory for the pictures. Default is ’ChaosPro: ←↩

Pictures’. Because everybody
has another favorite place for the images, you can specify this.

EXPORT=<Dir>
This tooltype specifies the directory for the exported objects in the Reflections ←↩

file format.
Default is ’Szenen:’.

PALETTES=<Dir>
This tooltype specifies the directory for the palettes. Default is ’ChaosPro: ←↩

Palette’.
If your palettes are in another directory, you may change the directory. Please ←↩

note: ChaosPro will
still on startup load only the palettes present in ’ChaosPro:Palette’, this ←↩

tooltype specifies only the
default directory for the palette filerequester.

VIRTUAL=<Dir>
This tooltype sets the directory, in which the temporary files for the virtual ←↩

buffer will
be placed. This should be a directory on a partition, which has much place free.
Default is ’ChaosPro:’.

ANIMS=<Dir>
This tooltype specifies the default directory for the animation filerequester. ←↩

Default
is ’ChaosPro:Anims’.

STARTPRI=<Priority>
This tooltype specifies the start priority of ChaosPro. ChaosPro itself will run ←↩

with this priority, every subprocess will have ’StartPri-1’. Default
is ’StartPri=0’

AUTOSAVE
If specified, ChaosPro will automatically execute the menu item ’Save Config’ on ←↩

program termination.
The file ’ChaosPro: Prefs/ ChaosPro.config’ will be saved, so at the next startup
the windows automatically will open at the old place.

DEBUG
If you specify this tooltype, ChaosPro will inform you about the progress in the ←↩

initialization procedure.
This is usefull especially when you have trouble starting ChaosPro, because then ←↩

you will approximately
know, where ChaosPro has trouble, so you can fix these troubles, or you can at ←↩

least let me know, where
ChaosPro has trouble. It’s of no use to write me, that ChaosPro doesn’t start. I ←↩

need some more information.
So if you contact me about problems on startup, then please write me the output, ←↩

which ChaosPro makes, when
you specify this tooltype.

EHB_HAM

ChaosPro 92 / 115

If you set this tooltype, then the screenmode requester displays the EHB and HAM ←↩
modes, too.

ChaosPro doesn’t support these modes, but it works. Until now I didn’t find out ←↩
the sense of the tooltype, I just implemented

it due to a suggestion of a user...

SAVEGFX
If specified, Forbid/Permit is placed around every call to WritePixelLine8. If you ←↩

have
an OCS/ECS/AGA-Amiga, I recommend to specify this tooltype as it seems as if there ←↩

’s a
bug in the OS: Calculate several fractals at the same time. On my A4000/040 I can ←↩

calculate
about 3 or 4. Then the system suddenly totally hangs (mouse pointer doesn’t move). ←↩

No Enforcer-hit,
no mungwall report, no memory loss. If you have a GfxCard with an Intuition ←↩

emulator, then
you could try to leave this tooltype unspecified. Perhaps the Intuition emulator ←↩

of the
GfxCard doesn’t have this bug...

WIZARDOPEN
If specified, then the Wizard window automatically opens, if a fractal is ←↩

calculated. This
applied to normal fractals and to the AnimWizard...

OUTPUTLINES=xxx
OUTPUTLINES=xxx specifies the number of output lines created in the output window
.

REQHEIGHT=xxx
This tooltype lets you specify the height of all file, font and screenmode ←↩

requesters in
pixel.

COORDSHOW
Specified, whether the (complex) coordinates of the current fractal should be ←↩

displayed
in the screen title bar.

DEFFRACTSCREEN=<PubScreenName>
DEFPARMSCREEN=<PubScreenName>
These tooltypes let you define two public screens, which ChaosPro should use ←↩

instead of opening
the Fractalscreen and (perhaps) the Parameterscreen. Now you can define your ←↩

favorite Publicscreen
with your favorite settings, for example with a background pattern using the ←↩

program ’ScreenWizard’ and
ChaosPro will use this screen...
ATTENTION: YOU HAVE TO ENSURE, THAT THE FRACTALSCREEN HAS A DEPTH OF AT LEAST 3 ←↩

PLANES, E.G. 8 COLORS,
IF YOU USE THIS FEATURE!!

1.65 2.10 Legal Stuff

ChaosPro 93 / 115

2.10 Legal Stuff

While developing this program, bugs in it crashed my harddisk a few times. So be ←↩
warned.

There are for sure bugs in the program which can cause bad things...

So:
No Warranty

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDER AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR ←↩

IMPLIED,
INCLUDING, BUT NOT LIMITED TO,THE IMPLIED WARRANTIES OF MERCHANTABILITY AND ←↩

FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE ←↩

PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL ←↩

NECESSARY
SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY ←↩
COPYRIGHT

HOLDER, OR ANY OTHER PARTY WHO MAY REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR ←↩

CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY ←↩

YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF ←↩

SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ChaosPro 1995 Martin Pfingstl

ChaosPro is Public Domain.

1.66 2.11 Searching for...

2.11 Searching for...

I’m searching for:

1. Translater of the catalogfiles: Mail me, then you get the .cd and .ct-files.

2. If you have suggestions to improve the documentation, you are welcome to do so.
Especially if you want to correct my bad english...

3. If you have calculated some nice images, mail me the data files of them.

ChaosPro 94 / 115

1.67 2.12 About the Speed...

2.12 About the Speed of ChaosPro

Well, and now I have to say something about the speed of ChaosPro. Many people ←↩
seem to love

ChaosPro, they almost only complained about the speed.

Now I want to say the following:

ChaosPro wasn’t written to claim, that it’s the ’fastest fractal program ever’. ←↩
Other programs are faster.

But on the other side I didn’t write ’slow’ routines. ChaosPro isn’t that slow, ←↩
than you may think after

the first speed comparison between other programs.

What some people didn’t realize exactly is, that the choice of the parameters has
enormous influence on the speed. Just an example: Outside coloring=CPM. What ←↩

happens,
if you compare the speed? The other programs just calculate an integer value for ←↩

every
pixel on the screen using the escape time algorithm (that’s the one you know...)
After that (if multiple pass is selected), they examine little squares, whether ←↩

the 4 corners
all have the same value. If yes, then the whole square is set to the value of the ←↩

4 corners.
This of course speeds up the calculation process quite a lot. These people now ←↩

think, that
it makes no difference, if they just choose CPM in ChaosPro. Well, that’s wrong.
If you use this mode, then the program calculates a float number for every pixel ←↩

on the screen.
Of course it’s very unlikely, that the 4 corners of a little square have all the ←↩

same float
value.

Inspite of this, ChaosPro was really slower than other programs, even if you ←↩
selected only

the standard parameters (but not that much, as people thought...). Because I don’t ←↩
want people

to complain about the speed, I speeded up the routines. These speedups affect the
iteration functions, so you will notice it, when you zoom in. Inspite of this, the
standard mandelbrot will still need more time to finish than with other fractal
generators. This is due to the drawing routines I use, i.e. due to WritePixelLine8 ←↩

and
ClipBlit. Other programs just ’poke’ directly into the bitplanes, thus making it ←↩

not
totally systemconform. I refuse to write such hack-routines. If you know how to ←↩

speed
up drawing routines, then let me know...

1.68 2.13 Changes since V1.0

2.13 Changes since V1.0

ChaosPro 95 / 115

Changes since V1.0
Changes since V2.0

I want to split the changes into 2 parts:
First part: Changes, which you normally will notice,. That’s the more interesting
stuff...

Second part: Changes, which you normally won’t notice, for example bugfixes, ←↩
changed behaviour,

slight corrections or something similar...

a) Changes, which you will notice

- ChaosPro speeded up (Black_Hole, resolution 640x495, 1 Pass, etc. in V1.0: ca 8 ←↩
min,

now: ca. 6 min)

- ChaosPro now is able to read Mand2000, Mandelmania and compatible fractal data
files.

- Virtual Julia- and Mandelbrotfractals: Parameterwindow 3 lets you specify some ←↩
values, then choose

menu item ’Start virtual’

- Colormapping window added

- graphical representation of colormapping added.

- Wizardwindow added

- Commentwindow for every fractal added

- FractInt-Palettes (these *.map-files) can now be loaded and used with ChaosPro
.

- 3 different Dockwindows with gadgets for some actions.

- New feature, new tooltype: AUTOSAVE. If you specify this, then ChaosPro will
write the file ’ChaosPro.config’ into the ChaosPro/Prefs/ drawer, as if the user ←↩

has choosed the menu item
’Save config’. So the program at the next startup will appear in almost the same ←↩

look as you left
it.

- Old formula window changed. Now you only can choose the formula for the ←↩
calculation, if you want to change a formula, you have to open

another window.

- Formula editor now unterstands logical operators: ’==’ ’!=’ ’>’ ’<’ ’>=’ ’<=’ ’T ←↩
’

’F’ ’!’

- New mode for the Wizard window: If choosed, then the graph of the heights ←↩
transformation function will be shown.

- Formula editor improved (each formula has several parts now)

ChaosPro 96 / 115

- ChaosPro now is able to load pictures, if you have the datatypes.library ←↩
installed

.

- DEM (Distance Estimator Method) built in. This calculates an estimation for the ←↩
distance of a point to the border of the

set. This mode is slow, because one has to calculate actually 2 iteration ←↩
functions, not only z^2+c, but also

f=2*z*f+1 (derivation of z^2+c)

- New fractal types: IFS/ LSystem/ Brown/ Diffusion, where each IFS and LSystem ←↩
have an additional formula

editor.

- Plasma now may be calculated in 3D, which leads to mountains and nice landscapes
.

- Lightintensity-Gadget built in, which determines the light intensity, so you can ←↩
calculate

an animation, where the light slowly is switched on.

- Reflections-Export added

b) Changes, which you normally won’t notice

- Closing a window and reopening on another screen didn’t work for windows of ←↩
fractals, if the

fractal itself wasn’t calculated

- When changing the screenmode all calculated fractals (i.e. their windows) got ←↩
the

default size, but the program itself thought, that they had the same size as ←↩
before --> fixed, now the window

is opened in the same size as before...

- If an AnimData file was saved, and the corresponding animation is a 24 Bit Anim, ←↩
then the

program complained about a malformed AnimData-file. Planes was 9, program checked ←↩
for

>8...

- CPPrefs-Window could be too big, if the font was too large. Because ←↩
WA_AutoAdjust wasn’t specified, it

didn’t open, so ChaosPro couldn’t be run.

- Stacksizecheck was wrong, if the program was started from the CLI.

- If ChaosPro.Topics for any reason has a size of 0 Bytes, then ChaosPro ←↩
complained

about too few memory, because AllocMem(0,MEMF_CLEAR) always returns 0.

- If a window was too big for the screen, then ChaosPro should have taken the ←↩
small font, set with

CPPrefs. But ChaosPro calculated all sizes and positions, as if it would take this ←↩
small font and

ChaosPro 97 / 115

then took the big font...

- Tooltypes added: Anims, Pictures, Palettes, Virtual, StartPri, to specify these
directories.

- Maximal number of iterations in the inside/outside area from the datawindow ←↩
removed

.

- Formeltextgadget wasn’t adhered to the listview in the window.

- New colormapping function added: Sqrt

- Taskpriority of ChaosPro now is shown in the SystemInfo-Requester.

- If opening a screen fails, then ChaosPro shows the exact error obtained from the
operating system.

- ChaosPro just cleared the first 65535 elements in the buffer, if you changed the
maximum number of iterations.

- If you changed the iteration depth, then the fractal was just drawn again and ←↩
not calculated

again.

- Formelparser didn’t like ’-’.

- Abort condition 3 removed. Now used in conjunction with the formula editor
.

- New Tooltype: DEBUG

- DEM Gadget in the datawindow added

- Eliminiation algorithm had a bug.

- PicTask-Window now isn’t refreshed every time a new fractal gets active. Only ←↩
the gadgets, which

have changed, are refreshed. This avoids this nasty flickering.

- Palette editing didn’t always work as expected. Grey scale palettes were wrong ←↩
and ’spread’

didn’t work with grey scale palettes.

- If you save a picture, then the CRNG-Chunk is saved. Now I only need a program, ←↩
which

pays attention to this chunk (CRNG=Colorcycling RaNGe)

- Moving the fractal past the left border didn’t work.

- Function imag(...) was implemented wrong.

- Formula editor didn’t like spaces

ChaosPro 98 / 115

Now the changes since V2.0:

- DeepZoom added.

- Bug in routine SetData2Default removed, which crashed the computer, if too many ←↩
data

were changed at once.

- changeable rotation point for Julia/Mandel added.

- Palette morphing during an animation now is possible
.

- If the number of iterations of Julia/Mandel were around 40000 or more, then the ←↩
slider showed a strange behaviour, because the OS can

handle only a range of -32768 to 32767.

- Choice of interpolation knot points enhanced. If you for example create an ←↩
animation,

in which the number of iterations goes from 10 to 150 in 15 frames, then the ←↩
single frames

get the iterations 10, 12, 14, 17, 21, 27, 33, 40, 50, 62, 77, 90, 107, 127, 150. ←↩
This now applies also to

the ’Slope’-value in the 3D parameter window 2.

- 5 lists for fractals in the PicTask window are now possible
.

- Program divided by 0, if Wizard window was opened and the fractal not calculated
.

- Pseudo Mandelbrot added: The first parameter, which was changeable
for Julia sets, but not for Mandelbrot sets, now may contain an initial value, ←↩

which results in
a so called pseudo Mandelbrot set.

- ToolType SaveGfx added.

- If ChaosPro.topics wasn’t existant, then ChaosPro produced an Enforcer hit.

- VMM now should work with ChaosPro.

- Network calculation now should be possible.

- Drawing of LSystem was wrong. Negative coordinates weren’t handled correctly
.

- ’Show done’ now isn’t in the window title any more, but in the Wizard window of ←↩
the

fractal.

- Defaultparameter now can be changed.

- Virtual calculation didn’t work, if buffer was set to 16-Bit-Int

- New Arexx commands:
- StartAnim

ChaosPro 99 / 115

- AbortAnim
- LoadAnimData
- SaveAnimData
- MoveAnimKey
- DelAnimKey
- AddAnimKey
- GetAnimKey
- SetAnimData Width/Height/Depth/3DAnim/Buffer/Interpolation/Savemode/Startframe ←↩

/EndFrame/3DBuffer
- GetAnimData Width/Height/Depth/3DAnim/Buffer/Interpolation/Savemode/Startframe ←↩

/EndFrame/3DBuffer
- AnimKeyPalette Set/Clear/Get <Name>
- AnimKeyFrames Set/Get <Name>
- TimeUnit
- CalculateFrames
- FrameToPic

- Directory ChaosPro:Dockimg now can contain alternative images for the dock
windows.

- New menu item Screencolors now lets you change the first 4 colors of the
screen.

- ChaosPro reloads directories, if the filerequester is called. In V1.0 and V2.0 ←↩
the buffer of ReqTools was used, which was confusing, if a

file was saved. It wasn’t displayed.

- Accuracy setting added.

- New window: AnimWizard, Wizard window for the animation system
.

- New ToolType: WizardOpen.

- If an AnimKey was moved up/down, then it could leave the visible region. If you ←↩
have OS3.0, then this doesn’t happen

any more.

- ’Endframe’ in the window title of an animation was slightly confusing: If the ←↩
animation consisted of 200 frames, but one

only wanted to calculate the first 100, then the title said ’xx/200’ instead of
’xx/100’.

- Outputwindow added.

- New ToolType: OUTPUTLINES=xxx specifies the number of output lines, which get ←↩
allocated at

startup.

- If the screenmode was changed and during this change an error occured and the ←↩
user decided to leave ChaosPro,

then ChaosPro crashed.

- Requester font now can be changed. Menu item ’Settings/Choose Font/Requester’ ←↩
lets you do

this.

ChaosPro 100 / 115

- New ToolType: ReqHeight

- New ToolType: CoordShow

- New menu item: CoordShow

- Bug removed: If too few memory was available to calculate a fractal, then ←↩
ChaosPro could crash, because it removed

an entry from a list, which wasn’t in this list.

- Arexx-script Show_all_fractals added. Userwindow 1 contains this entry. It lets ←↩
you

choose a directory containing fractal data files, and then all data files are ←↩
loaded

and calculated, so you get an overview of your fractals.

- Wizardwindow now displays the time needed for the fractal calculation. But now ←↩
it updates this time on a regular

basis.

- FPU was initialized too late. This could lead to wrong data in the fractals, ←↩
which are loaded at

startup.

- 2 new ToolTypes:
DEFFRACTSCREEN=<PubScreenName>
DEFPARMSCREEN=<PubScreenName>

- Saving a picture by selecting the appropriate gadget in the dock window didn’t
work...

- 3D-Window was opened too big. So the resulting 3D image was saved with a blank ←↩
vertikal line at the right

border.

- If you saved an animation in picture mode, then ChaosPro didn’t check correctly, ←↩
whether you are about to

overwrite an existing file.

- If you saved an animation in picture mode, a picture was finished, ChaosPro ←↩
wanted to save it, but it was already

existant, then ChaosPro constantly asked the user, if he really wants to overwrite ←↩
this

file.

- AnimWizard window wasn’t updated like the normal Wizard window.

- additional ASCII format for formula of type Julia/Mandel. Description of this ←↩
you’ll find in the chapter about

the formula parser

- Network-Window added.

- Bug removed. If you played with Undo/Redo you could crash the computer due to a ←↩
bug in the list chaining

routine.

ChaosPro 101 / 115

- Fractal with the name ’StartUp’ is calculated at startup of ChaosPro. Place a ←↩
fractal with this name in the directory ’ChaosPro:FractPic’ and ChaosPro

will immediately calculate this fractal at startup. If you don’t like this, then ←↩
delete the fractal or

rename it...

- If one changed the name of an AnimKey, then ChaosPro didn’t check, whether the ←↩
name was already in

use.

- ChaosPro now remembers size and position of fractal windows. Just calculate a ←↩
fractal, then close the window,

then save the data file.

- Virtual calculation mode: Rotation of the fractal by 90 degrees didn’t work ←↩
correctly, perhaps a bug in the

Seek routine

- ChaosPro could crash, if the wizard window was opened.

- Virtual calculation mode: The fractal window now shows what’s happening during ←↩
the

calculation.

- Virtual calculation mode: Progress indicator for rotating the fractal by 90 ←↩
degrees was calculated

wrong.

- New material file for Reflections created by Rolf Schulz.

- 5 different directories now are scanned at startup and all the fractal data ←↩
files contained in them are loaded

into the 5 available lists.
5 new tooltypes exist for these 5 directories:
- DEFFRACTDIR1=<Directory 1> ((Default is ChaosPro:FractPic))
- DEFFRACTDIR2=<Directory 2> ((Default is ChaosPro:FractPic_2))
- DEFFRACTDIR3=<Directory 3> ((Default is ChaosPro:FractPic_3))
- DEFFRACTDIR4=<Directory 4> ((Default is ChaosPro:FractPic_4))
- DEFFRACTDIR5=<Directory 5> ((Default is ChaosPro:FractPic_5))

1.69 Some Cookies (sorry, couldn’t resist)

... A bus station is where the bus stops.
A train station is where the train stops.
On my desk there is a workstation...

"All I know is what I see on the monitors."

Computing Definition:
Microsecond - Amount of time needed for a program to bomb.

1st Law Economists: For every economist there exists an equal and
opposite economist.

2nd Law Economists: They’re both always wrong!

ChaosPro 102 / 115

Sega brings you its new Baby....CBM brings you the MOTHER..CD32

"Research shows that no-one ever went blind from
looking on the bright side of life"

"I really wish I’d listened to what my mother told me when I was young."
"Why, what did she tell you?"
"I don’t know. I didn’t listen."

Reality is just a big simulation -- And it’s still in beta-testing !

Living on Earth may be expensive, but it includes an
annual free trip around the Sun.

>>> Life starts at ’020 ... fun at ’030 ... impotence at ’86 <<<

keyboard not connecte+d -- press F1 to continue

WindowsError:010 Reserved for future mistakes

WindowsError:011 Hard error. Are you sitting?

America has Bill Clinton, Steve Wonder, Bob Hope & Johnny Cash
we have Helmut Kohl, no Wonder, no Hope & no Cash !

MS-DOS is the worst text adventure game I have ever played: poor vocabulary,
weak parser and a boring storyline.

WindowsError:003 Dynamic linking error. Your mistake is now in every
file.

Windows NT: From the makers of Windows 3.0!

GEOS ON C64 IS MUCH BETTER THAN WINDOWS ON PC

* Englishtraining for runaways:

*
* Don’t worry, eat Chappy

Nuclear clock stands at T - 5 minutes

Don‘t marry be happy

WindowsError:014 Nonexistant error. This cannot really be happening.

1.70 2.14 Many Thanks and Greetings to...

2.14 Many Thanks and Greetings to...

Well, let me thank all the people, who have supported me and my work on ChaosPro
:

ChaosPro 103 / 115

Rolf Schulz: He made so many suggestions, that I spent weeks implementing only his ←↩
ideas. The average

mail size between Rolf and me currently is around 25KB (could be correct, Rolf, ←↩
coudn’t it?), well, ASCII-text of

course, no binaries...
Additionally he is responsible that I had to buy a bigger harddisk just to store
my .todo file... ;-)

Olaf Krolzig: A betatester since the beginning. He has suggested many features, ←↩
constantly reported many

bugs.

Lutz Uhlmann: This was my first betatester. At least it was the first one of the
betatesters, who was able to start ChaosPro. He has suggested to implement a ←↩

screenmode- and
font-requester

Kay Gehrke: He constantly reported bugs concerning the Picasso-graphics card. So I ←↩
finally managed it to write

a system conform program.

Manfred Ambros: He tested all stuff. He also tested the documentation, reported ←↩
wrong links and some spelling

mistakes...

Jake and Mac Melon: These two betatesters persuaded me to rewrite the animation ←↩
system, to add the spline-interpolation between key frames, to enhance the 3D- ←↩
transformations,

etc...

Roberto Patriarca: He is responsible for the italian translation of the catalog- ←↩
file. He also

offered his help to translate the whole documentation to his native language. I ←↩
dissuaded him from doing so.

I think, after the translation of the documentation he wouldn’t want to hear the ←↩
word ’ChaosPro’ again. I think, a friend, a user of ChaosPro,

is better than an italian documentation...

Bruce Dawson: He was written Mand2000 (Cygnussoft) with its genious user interface ←↩
.

If you would have suggested me to write a fractal generating program, which ←↩
calculates the fractals into windows and is able to calculate more fractals

at the same time, then I would have asked, why I should do so, because I thought, ←↩
it doesn’t make much sense.

Bruce Dawson with Mand2000 proved, that this in fact makes much sense. So Mand2000 ←↩
is/was the pattern for

ChaosPro. Many thanks to Bruce Dawson!

1.71 2.15 Features of ChaosPro

2.15 Features of ChaosPro

This chapter describes the following features of ChaosPro:

1. Calculation of 24 bit images

ChaosPro 104 / 115

2. 3D transformations

3. Animations

4. Network support

5. Virtual calculation mode

6. Configuration of ChaosPro

1. Calculation of 24 bit images

One of the features of ChaosPro is, that it normally uses a buffer, which holds ←↩
the

calculated iteration values. Due to this behaviour it is possible to save fractal ←↩
images in

any display depths. ChaosPro simply has to take all the iteration values and then ←↩
only must

calculate the corresponding colors. So you can save real 256 color images, even if ←↩
you only

have an Amiga with the ECS chip set. After that you could use another program to ←↩
convert the

256 color image to HAM6 mode or something like this. Well, this way you can ’see’, ←↩
whether

it makes sense to buy a graphics card or not...
Now if you want to save images in 24 bit, then of course there must be many ←↩

different
iteration values in the buffer. If you choose the ’normal’ way of rendering the ←↩

mandelbrot or
julia set, where only an integer value gets calculated for every pixel in the ←↩

window, then
it should be clear, that no great 24 bit images can be obtained: Only integer ←↩

values from
0 to maxit are possible and normally you only get much less different values. This ←↩

of course
is totally unsatisfying. You have to choose an algorithm, which assigns many ←↩

really different numbers to the pixels
in the window. Then you can expect to get lots of colors. ChaosPro offers 2 ←↩

different
algorithms for this: CPM and DEM. Both assign floating point numbers to every ←↩

pixel in the window,
CPM does this by calculating the potential of the point, DEM does this by ←↩

calculating an
estimation for the distance to the set. For more information about CPM and DEM, ←↩

please
read the text about Outside-coloring.
Additionally you should choose the IEEESP-buffer. If no buffer is allocated, then ←↩

of course
all of the above is nonsense. ChaosPro won’t do anything special. If you choose ←↩

16-bit-int buffer,
then only 65535 different values are possible, so only 65535 different colors are
possible.

ChaosPro 105 / 115

2. 3D Transformations
As I mentioned it in the last few paragraphs, you have to ensure, that many ←↩

different
values are available in the buffer. If you choose the ’normal’ way of rendering, ←↩

then
only integer numbers get calculated. This of course results in sudden ’skips’ in ←↩

the
3D image, which one doesn’t want. So if you want to have 3D transformations, you ←↩

have
to choose CPM or DEM. Additionally set the buffer to IEEESP, otherwise there could
be some strange behaviour. After that only the right parameters have to be chosen ←↩

to
obtain a nice image. Please note: Due to some reasons, which are hard to explain (←↩

I know them...),
DEM is better than CPM for 3D transformations, although DEM is really slow. ←↩

ChaosProV1.0
only supported CPM. There it was a big problem to obtain any reasonable parameters
for 3D transformations. There always were regions in the image, where too huge ←↩

jumps
were made. This can be avoided, if you use DEM. 2 points, which ly adjacent, can ←↩

have two totally
different values, if you choosed CPM. But if you choose DEM, then 2 adjacent ←↩

points have
values, which don’t differ too much.
The main window for 3D transformations is the 3D parameter window 2. Here you ←↩

define, how
the values from the buffer are converted into heights. I recommend, you first ←↩

click onto
the ’Suggest’-Gadget. Then you should at least see something. Then have a look at
the ’water’ and ’plateau’ values. Choose ’plateau’ around the maximum of ←↩

iterations, you
can lower it afterwards. You first should have the right transformation function.
After that you should choose a reasonable color palette, perhaps ’Volcano’ or ’ ←↩

Grey’.
Then you should adjust the ’slope’ value. Please note: This value is very critical ←↩

. It often
happens, that if you change it slightly, the resulting picture doesn’t fit into ←↩

the window.
In this case try to change ’slope’ again or adjust ’Frontmult’ and ’Backmult’. I ←↩

recommend
adjusting ’Frontmult’ and ’Backmult’, perhaps the slope value is good, but the ←↩

heighs simply
have to be divided by a huge number. So simply divide ’Frontmult’ and ’Backmult’ ←↩

according
to your taste. You can play a bit with ’Max’ and ’Min’, perhaps you get a better ←↩

result,
you can choose ’invers’, perhaps this way the picture looks more amazing. Sooner ←↩

or later you
should get a nice image. At the end you can open the 3D parameter window 1 or 3 ←↩

and adjust other values like the light settings,
the view angle etc.

3. Animations

ChaosPro can create animations in almost any plane depth. Throughout the animation

ChaosPro 106 / 115

you can change all parameters, which don’t act as switches or something like this.
Let me explain how I create an animation:
I calculate a fractal, which should define the start of my animation. I change it, ←↩

so
it suits my (optical) needs. As soon as I’m finished, I add it to the AnimKey list
by clicking onto the corresponding gadgets. This way an AnimKey gets created and ←↩

all
values, which describe the fractal, are copied into this AnimKey. The values in ←↩

this AnimKey
stay fixed. There is no possibility to directly change these values. After that I ←↩

change some
values of my calculated fractal, perhaps I zoom in a bit, or I move around or I ←↩

change
the bailout value or do something else. After that I add it again (the same ←↩

fractal, but now with
other values...) to the AnimKey list after the first one I’ve added. ChaosPro is ←↩

able
to recognize the parameters, which have changed between the AnimKeys, and can ←↩

create in-between data structures,
which represent some fading from the parameter set of one AnimKey to the other.
It should be clear, that one shouldn’t change too much too strong from one AnimKey ←↩

to the next
AnimKey. I personally zoom in about 2 times, then I add it again as an AnimKey. If ←↩

you want to change parameters more, then do this
step by step, add several AnimKeys.
Well, this was the creation of an animation. After that you can define the width, ←↩

height,
depth, number of frames to be calculated from one AnimKey to the other etc. If you ←↩

have done
all you want, click onto ’Start’.

Starting with ChaosProV3.0 one can change the palette during an animation. To do ←↩
this, you may

assign color palettes to the different AnimKeys you’ve created. For example, if ←↩
you create a zoom-in

movie, then you could change the palette from ’Volcano’ to ’Ice’. Then the first ←↩
frame uses

the palette ’Volcano’. For the second frame an in-between palette gets calculated, ←↩
which interpolates

the different values from ’Volcano’ to ’Ice’, etc... It’s somehow strange to ←↩
explain, but I think,

you got what I mean ;-)
There is no compulsion to assign a palette to every AnimKey, which you created. ←↩

For example, if you
have 5 AnimKeys and you simply want to morph the palette from ’Volcano’ at the 1st ←↩

AnimKey to ’Earthy’
at the 5th AnimKey, then it makes no sense to assign a palette to the 2nd, the 3rd ←↩

and the 4th AnimKey.
These AnimKeys shouldn’t have a palette, it should be calculated by ChaosPro. ←↩

Otherwise
the user would have to calculate such an in-between palette by hand, and this ←↩

really isn’t a pleasant work for
a human being ;-)
The assignment of a color palette to an AnimKey is simple: Choose the AnimKey, ←↩

choose the palette in the Palette window,
choose the color offset and skip value in the Palette window, then click onto ’Set ←↩

’ in the Anim1 window. If you want to deassign a palette, click onto ’Clear’ in

ChaosPro 107 / 115

the Anim1 window (surprise, surprise ...).
Some special cases have to be mentioned:
If the first AnimKey doesn’t have a palette assigned, then ChaosPro automatically ←↩

assigns the current global palette to it. The reason is clear, if
you think a bit about it: ChaosPro must have a color palette for the first frame. ←↩

What colors
should an animplayer set for the first frame, if there would be no colormap? ←↩

Should an animplayer first
search the whole animation file for the first colormap? No, this makes no sense. ←↩

So ChaosPro must save
a colormap with the first frame of an animation. Additionally this is, how ←↩

ChaosPro is downwards compatible
with ChaosProV2.0 and ChaosProV1.0. There no palettes were assigned, always the ←↩

current global
palette was taken.
The other special case is, when the last AnimKey (or the last few AnimKeys) doesn’ ←↩

t have a palette
assigned. Then starting from the last AnimKey, which has a palette assigned to it, ←↩

the palette stays
fixed. If for example AnimKey 1 has a palette, AnimKey 2 another palette, AnimKeys ←↩

3, 4, etc. don’t have
a palette assigned, then the palette smoothly changes from AnimKey1 to AnimKey2 ←↩

and then stays fixed
until the end of the animation.

4. Network support

Starting with V3.0 ChaosPro has the ability to make use of several Amigas, which ←↩
are connected in a network using

Envoy. For this to work, you have to start CPChild on all Amigas, which should ←↩
calculate. Then you should

start ChaosPro on one of the Amigas. Please note: You should start CPChild on this ←↩
Amiga, too, because the subtask of ChaosPro, which

normally calculates the fractal, is busy with handling the whole network stuff. If ←↩
you

then start a fractal calculation process, this work is splitted up into many small ←↩
jobs, which are

sent to all CPChild processes (well, not really, each CPChild creates a subtask ←↩
and these subtasks calculate...)

In principle CPChild is similar to ChaosPro, but without the GUI and without much ←↩
other stuff (it supports

only julia and mandelbrot fractals, for example...). If you start a fractal ←↩
calculation, then each

CPChild gets the command to create a subtask, which should then calculate a ←↩
portion of the fractal. This is

basically the same as ChaosPro does: ChaosPro creates a subtask, too, which should ←↩
calculate the fractal. In

the network mode this subtask doesn’t calculate anything, but rather sends ←↩
commands to all CPChild processes

to create subtasks. These subtasks then get jobs from the subtask, which ChaosPro ←↩
created. So ChaosPro itself

doesn’t know anything of network, etc. It simply created a subtask and doesn’t ←↩
bother with the

rest.
Well, some requirements have to be made for all this to work:

ChaosPro 108 / 115

- First the network software must be Envoy, to be more exact, ChaosPro needs nipc. ←↩
library, which is

shipped with Envoy. It tries to open nipc.library, so if you have another software ←↩
, which has a compatible version

of nipc.library, then it should work, too.
- Then all Amigas must have a FPU.
- The memory requirements are very low on all Amigas, which only run CPChild. Only ←↩

the Amiga, which runs ChaosPro, must have
more memory.
To use the network stuff, you first have to completely install ChaosPro on all ←↩

Amigas. If you are
sure, that you don’t want to use ChaosPro on most of the other Amigas, then you ←↩

could do a minimal
installation, consisting only of CPChild and ChaosPro.library in ChaosPro/libs.
After the installation you have to decide, where you want to run ChaosPro. ←↩

Remember the hostname of this computer!
After that you have to set the tooltype ’CHAOSPROHOST’ of every CPChild, which you ←↩

want to start, to the
hostname of the Amiga, on which you want to start ChaosPro. The reason for this: ←↩

After starting CPChild this
process has to locate ChaosPro to create a connection between ChaosPro and CPChild ←↩

. ChaosPro must know where workers
are. And CPChild must know, where to search for ChaosPro. If you’ve done all this, ←↩

you can start:
Start ChaosPro, then start CPChild on all Amigas. That was all, the rest should ←↩

work automatically. All CPChild processes terminate as soon as ChaosPro ←↩
terminates. You can’t

quit these processes directly.
Others worth mentioning: You are explicitely allowed to start CPChild several ←↩

times on
any machine you like. If it’s of much use, you have to decide. You could test it. ←↩

Perhaps then
it runs faster, although I don’t think so. At least for debugging purposes this ←↩

makes
sense...

5. Virtual calculation mode

Starting with V2.0 ChaosPro has the ability to calculate fractals in a virtual ←↩
mode.

This means, it’s possible to calculate huge fractals without the need for dozends ←↩
of megabytes

of RAM. For example, up to now it was impossible for me, to calculate a 3D-fractal ←↩
of size 1024x768 in 24 bit, because I don’t

have enough memory for the required buffer.
To calculate a fractal in virtual mode, you have to specify the width, the height, ←↩

the depth in planes, and whether a 3D-transformation
has to be performed after calculating the fractal. All these values you can change ←↩

in the parameter window 3 for julia and mandelbrot
fractals.
If you have specified these values, you have to choose the menuitem ’Fractal/Start ←↩

virtual’.
ChaosPro will then start the calculation process. The buffer now will not be ←↩

created in RAM,
but on your storage device. A file will be created on this device. Default ←↩

directory is ’ChaosPro:’,

ChaosPro 109 / 115

but this can be altered with the tooltype ’Virtual=<Dir>’. As soon as the fractal ←↩
is finished

a filerequester appears, asking you for the name of the IFF-ILBM-file to store the ←↩
big

fractal in it.
This virtual calculation is useful especially in conjunction with the printer tool ←↩

’Studio’,
which allows you to print huge fractals, which don’t fit into the memory. Normally ←↩

a
fractal of common size will somehow consist of many little squares, if you try to ←↩

print it in DIN A4 size, which doesn’t
look very good. Now you can print posters...

6. Configuration of ChaosPro

There are several possibilities, how to adjust ChaosPro to your personal taste. In
former times all these possibilities were distributed all along the guide file, so
almost nobody knew all configuration possibilities. Perhaps the users will read ←↩

this chapter and especially this paragraph.
This will save much of my time...

- The first thing you should configure is the used screenmode. There exist menu ←↩
items, which let

you change the screenmode of the Fractalscreen, the Parameterscreen and the ←↩
Colorscreen.

Save the config file after changing it, because the config file contains the data
...

- Additionally it is possible to start ChaosPro on a Publicscreen. But ChaosPro is ←↩
rather

crude: It simply takes all colors starting at number 4, whether it gets them or
not and changes them according to the current palette. The Publicscreen you can ←↩

change
through tooltypes...

- Well, the tooltypes. As soon as I was too lazy to implement a comfortable method ←↩
of changing

some program parameters, I implemented a new tooltype. There are quite many ←↩
tooltypes. I really (!)

recommend to read the whole chapter about the tooltypes. A tooltype exists, which ←↩
lets you access

EGS, another tooltype exists, which lets you disable the online help, which saves ←↩
time and memory. The Tooltypes

are here.

- Fonts: ChaosPro offers the possibility to change the font, which will the used ←↩
for the GUI, the menu and the

requesters. This of course greatly changes the appearance of ChaosPro. The fonts ←↩
can be changed through the use of

menu items, which open font requesters. Save the config file after changing the ←↩
font, so your changing don’t get

lost...

- My personal experience is, that almost nobody recognized, that it’s possible to
change to the font, the language (english and german) and the width of the guide

ChaosPro 110 / 115

file. The guide file should be called ChaosPro.guide and should be in english. You ←↩
can

change the font to use for the guide file without losing the formatting of the ←↩
file, you can

specify the width of a single line, so the guide file will fill the whole width of ←↩
your screen,

which perhaps could be 1024 pixels...I don’t know of many other programs, which ←↩
offer these

possibilities. There is no problem with choosing a proportional font. I once got
scared, when I saw, that somebody called the online documentation of ChaosPro and
then it appeared in topaz 8 on his 800x600 screen, filling only half the width of
his screen. How you can change this, you can read in the chapter about the ←↩

Preferences
program CPPrefs.

- Windows, their positions and automatic opening: All global windows, i.e. all ←↩
windows,

which can be opened only once at a time, have fixed positions, which can be ←↩
changed,

and a flag, which enables automatic opening at program startup. To set all this,
you have to do the following: Place the windows at the position, where you want ←↩

them to be,
then open/close them, until ChaosPro looks like you want it to look after program ←↩

startup.
After that you simply save the config file (menu item). The window positions and ←↩

the flag, whether it is
open or closed, is placed in the config file and then it is saved. At the next ←↩

startup of ChaosPro it will
look like you now saved it...

- You can define user defined windows and menus. If you select such a menu item, ←↩
or activate a gadget in a user defined window, then the assigned Arexx script ←↩
gets executed.

3 Links exist:
User defined menu
User defined windows
Preferences programm for compiling

- Few people know, that the Arexx script ’ChaosProInit’ from the directory ←↩
ChaosPro/Rexx gets

executed at every startup of ChaosPro. If you want to configure some other things, ←↩
which aren’t directly

supported by ChaosPro, then you perhaps can do it through the use of the Arexx
interface.

Default images: People seem to like the dock windows in ChaosPro, but they didn’t
like the images. Most people complained about them being quite ugly. Due to this ←↩

you now
can change the appearance of the different gadgets in the windows by providing ←↩

your own
images. The directory ’ChaosPro/Dockimg’ will be examined, whether files with ←↩

specific
names are existant. If files with some defined names are existant, then these ←↩

files are
loaded and replace the corresponding image data in ChaosPro. These files must be ←↩

in RAW format,

ChaosPro 111 / 115

because I was too lazy to implement a universal load routine for IFF files. To ←↩
convert IFF pictures

into RAW format you can use for example GfxMaster from Aminet. Some data to the ←↩
images:

The pictures must have a plane depth of 2 (4 colors), the size is fixed and must ←↩
be 32x24

pixels. The best thing would be to create such images with a paint program, then ←↩
to save it

and then to convert it into RAW format. After that the RAW file simply has to be ←↩
renamed to

the correct name and has to be placed in the directory ’Dockimg’. ChaosPro looks ←↩
for the

following files in Dockimg and loads them, if they exist. The ending ’Sel’ refers ←↩
to the

selected image, which appears, if you select the gadget.
ImAnim1 ImAnim1Sel
ImAnim2 ImAnim2Sel
ImCycle ImCycleSel
ImPalette ImPaletteSel
Im2D1 Im2D1Sel
Im2D2 Im2D2Sel
Im2D3 Im2D3Sel
Im3D1 Im3D1Sel
Im3D2 Im3D2Sel
Im3D3 Im3D3Sel
ImWizard ImWizardSel
ImComment ImCommentSel
ImColMap ImColMapSel
ImBoxZoomIn ImBoxZoomInSel
ImBoxZoomOut ImBoxZoomOutSel
ImUndo ImUndoSel
ImRedo ImRedoSel
ImShowLoc ImShowLocSel
ImShowJul ImShowJulSel
ImSave ImSaveSel
ImIFS ImIFSSel
ImDOL ImDOLSel
ImJM ImJMSel
ImDock1 ImDock1Sel
ImDock2 ImDock2Sel
ImDock3 ImDock3Sel

- Default fractal types: Another directory was created: ’ChaosPro/Defaults’. This ←↩
directory

may contain fractal data files, which must have specific names, which then are ←↩
loaded

and used, if the user wants to add a new default type of a fractal or simply wants ←↩
to

set the data to the default values. If you aren’t content with the default values, ←↩
which

ChaosPro provides, for example if you don’t like the buffer, which ChaosPro ←↩
automatically

chooses, or if you don’t like the parameter ’c’=0.3+0.6i of the standard julia set ←↩
or you don’t like any

other value, then you can change this: Choose the parameters to the values, which ←↩
you think, should

ChaosPro 112 / 115

be the default values. Then save this fractal data file by selecting the menu item ←↩
’Project/save data’

into the directory ’ChaosPro/Defaults’, using the correct name, which depends on ←↩
the fractal type.

ChaosPro looks for the following files in the directory ’Defaults’:
"def_Julia"
"def_Mandel"
"def_Bifurcation"
"def_DynamicSystem"
"def_Plasma"
"def_Lyapunov"
"def_Diffusion"
"def_LSystem"
"def_IFS"
"def_Brown"

I please you not to play around with this feature, for example to save a julia set ←↩
with

the name "def_LSystem". I don’t believe, that ChaosPro will crash, but for sure it
won’t show fancy features...
I recommend to set the picture name to def_Julia or something similar. ←↩

Additionally I recommend
to open the comment window and to insert your name and address in the fields ←↩

before saving
the default types. This way all your fractals automatically get your name, etc.

1.72 Index

III. Index

24 bit
3D:
3D:

- 3D Parameterwindow 1
- 3D Parameterwindow 2
- 3D Parameterwindow 3
- Introduction

about
animation:

- 3D
- add key
- delete key
- fraktal data
- framedistributionmode
- in/out
- keys
- move key
- planedepth
- size
- start/abort
- window

backdropwindow
Bifurcation:

ChaosPro 113 / 115

- A
- cykluslength
- data window
- formula
- iterations (data)
- iterations (parm)
- parameterwindow 1
- theory
- values of variables
- variable to use
- variables

boxzoom

calculate picture
colorcycling
continue calculation global
continue calculation local

datawindow
delete picture
duplicate picture
dynamic system:

- area
- drawmode
- parameterwindow 1
- parameterwindow 2
- speed
- start
- systemtype
- theory
- timeparameter
- viewangles

formula editor:
- add formula
- edit formula
- formula in/out

fractal pictures
fractal tasks
fractaltypes
fractalwindow

juliaset:
- abort conditions
- area
- bailin
- bailout
- biomorphy
- circle inversion
- datawindow
- decomposition
- drawpasses
- formula
- inside coloring
- iterations
- outside coloring
- parameter

ChaosPro 114 / 115

- parameterwindow 1
- parameterwindow 2
- parameterwindow 3
- theory

lyapunov-space:
- area
- chaoscolor
- data
- drawpasses
- formula
- iterations
- minimum of exponent
- parameter
- sequence
- stabilization
- start
- theory

mandelbrotset:
- abort conditions
- area
- bailin
- bailout
- biomorphy
- circle inversion
- datawindow
- decomposition
- drawpasses
- formula
- inside coloring
- iterations
- outside coloring
- parameter
- parameterwindow 1
- parameterwindow 2
- parameterwindow 3

move fractal

palettes/edit palettes:
- actions
- areas
- colorcycling
- colornumber
- colors
- copy
- delete
- duplicate
- edit
- editwindows
- HSV
- in/out
- invert
- name
- palettewindow
- RGB

picturename

ChaosPro 115 / 115

place window on another screen
plasma:

- granulation
- parameter
- proportion
- randomseed
- theory

proportion
preview

quit

recalculate fractal
redo

save data
save picture as ILBM
set juliaparameter
set values to default
show help
show location
stop calculation global
stop calculation local
systeminfo

taskpriority
theory to:

- bifurcation
- dynamic system
- juliaset
- mandelbrotset
- lyapunov-space
- plasma

undo
user defined windows

zoom

	ChaosPro
	Contents
	Preface
	Why should I use this program?
	Requirements
	Installation
	Author
	Concept
	PicTask
	Palettes
	Editing a Palette
	Animationwindows
	CycleControl-Window
	User Defined Windows
	Dockwindows
	Formeleditor für Julia/Mandel
	Formula editor for IFS
	Formula editor for L-Systems
	Outputwindow
	Network window
	2D/3D-Fractalwindows
	Juliasets: Theory
	Mandelbrotsets: Theory
	2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets
	2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets
	2.3 Fraktale --- 2.3.2 Julia- und Mandelbrotmengen
	2.3 Fraktale --- 2.3.2 Julia- und Mandelbrotmengen
	2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets
	2.3 Fractals --- 2.3.2 Julia- and Mandelbrotsets
	2.3 Fractals --- 2.3.3 Bifurcationdiagrams
	2.3 Fraktale --- 2.3.3 Bifurkationsdiagramme
	2.3 Fractals --- 2.3.3 Bifurcationdiagrams
	2.3 Fractals --- 2.3.4 Dynamic Systems
	2.3 Fractals --- 2.3.4 Dynamic Systems
	2.3 Fractals --- 2.3.4 Dynamic Systems
	2.3 Fractals --- 2.3.5 Plasma
	2.3 Fractals --- 2.3.5 Plasma
	2.3 Fractals --- 2.3.6 Lyapunov-Space
	2.3 Fractals --- 2.3.6 Lyapunov-Space
	2.3 Fractals --- 2.3.6 Lyapunov-Space
	2.3 Fractals --- 2.3.7 IFS
	2.3 Fractals --- 2.3.7 IFS
	2.3 Fraktale --- 2.3.8 L-System
	2.3 Fractals --- 2.3.8 L-System
	2.3 Fractals --- 2.3.9 Diffusion
	2.3 Fractals --- 2.3.9 Diffusion
	2.3 Fractals --- 2.3.10 Brown
	2.3 Fractals --- 2.3.10 Brown
	2.3 Fractals --- 2.3.11 3D-Ansichten
	2.3 Fractals --- 2.3.11 3D-Views
	2.3 Fractals --- 2.3.11 3D-Views
	2.3 Fractals --- 2.3.11 3D-Views
	2.3 Fractals --- 2.3.12 Wizardwindow
	2.3 Fractals --- 2.3.13 Commentwindow
	2.4 Menus
	2.4 Menus
	2.4 Menus
	2.4 Menus
	2.4 Menus
	2.4 Menus
	2.5 Programdirectories
	2.6 Preferencesprogram
	2.7 Troubleshooting
	2.8 Others worth mentioning
	2.9 Tooltypes
	2.10 Legal Stuff
	2.11 Searching for...
	2.12 About the Speed...
	2.13 Changes since V1.0
	Some Cookies (sorry, couldn't resist)
	2.14 Many Thanks and Greetings to...
	2.15 Features of ChaosPro
	Index

